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Abstract

Sound design involves creatively using sounds to build cinematic experiences for films

and games. It includes creating and manipulating environmental sounds, maintaining

large sound effects databases, and dealing with challenges in modifying recorded sounds.

This thesis aims to design and evaluate AI-based creative support tools to assist sound

designers in controlling and editing the semantic properties of generated sounds, provid-

ing novel avenues for creative sound exploration and discovering new sounds for use in

their creative projects.

Designing and evaluating generative audio AI models for sound design poses many in-

teraction design challenges. One challenge stems from the current lack of semantically

labeled environmental sound datasets. Another challenge is the lack of support for cre-

ative tasks such as morphing two or more sounds. Thus, in the first part of this thesis,

I develop and evaluate methods for granular semantic guidance using models trained on

unlabeled datasets and explore novel algorithms for the creative task of sound morphing

using pre-trained generative models.

In the second part of this thesis, I explore methods to evaluate generative models and

algorithms for sound design. The evaluation metrics literature lacks methods to per-

ceptually evaluate sounds generated by semantically guided or controllable generative

audio AI models. This thesis outlines novel methods to evaluate such AI models using

perceptual listening tests. Furthermore, I investigate the opportunities and challenges

of applying such AI-based creative support tools for the professional practice of sound

design.

In this thesis, I incorporate human-centered design principles to design digital tools for

creativity in sound design. In summary, the contributions from this work are as follows:

• The design and evaluation of AI-based creative support tools that encourage novel

sound exploration, perform semantic edits, and support creative tasks for sound

design, such as morphing.

• The design and evaluation of novel methods to perceptually evaluate outputs from

AI-based creative support tools for sound design.
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• Empirical findings from qualitative user studies for creative engagement conducted

with expert sound designers.

• Human-centered design insights and recommendations to guide future research on

AI-based tools for creativity support in sound design.

Through this work, I demonstrate the potential to design steerable creative support tools

for sound design using generative audio AI. I design affordances using tools that enable

sound designers to achieve their creative goals by using semantically relevant attributes

or properties of the environmental sounds they want to generate. Additionally, I develop

methods to perceptually evaluate the steerable models and their creative output using

subjective listening tests on crowdsourced platforms. I also study the challenges and

opportunities of applying such models in a practice-oriented sound design environment.

Finally, I highlight this work’s limitations and discuss potential future directions for

designing and applying generative audio models for sound design. Through this work, I

offer novel human-centered ways to design and evaluate future AI-based creative support

tools for sound design.
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Chapter 1

Introduction

Imagine you are walking in a forest. Your footsteps crunch as you walk across the forest

floor. You can hear the cicadas trilling. There is a slight drizzle, and you can hear the

sound of the raindrops. Our sense of perception of the world surrounding us relies on our

ability to direct our attention to such sounds. These sounds made by us interacting with

our surrounding environment are the sounds of immediacy and our physical presence [1].

The use of such sound in films and games is therefore crucial in creating an “atmosphere,”

mood, or feeling that enhances the cinematic experience for us as its consumers [2–6]. It

complements the visual information presented and communicates additional subliminal

non-verbal cues about the film’s environment [7].

Environmental sound effects such as wind, rain, or footsteps provide subtle sonic cues

about the environment and play a vital role in reinforcing the perception of reality and

immersing the viewer in the film’s narrative [4, 8]. Most of the environmental sounds

that we hear in movies, such as the sound of the actors’ movements or footsteps, etc., are

usually not recorded on location but added in post-production [9, 10], i.e., in a studio

using sound editing tools. Augmenting films with sounds in post-production falls under

the purview of craftspeople such as sound designers [2, 3, 7].

Sound designers create new sounds or use existing sound effect recordings to augment

video recordings. This involves synthetically generating or using pre-existing recorded

sounds using technical tools such as Digital Audio Workstations (DAWs). For instance,

it is a common sound design practice to synthesize the sound of a sword swooshing by

processing or filtering white noise using signal processing algorithms [6]. Or editing an

impact sound by layering animal growls underneath the sounds of an explosion to make

the effect more hyper-real or powerful [11]. Further, sound designers make use of Foley

1
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sound techniques when necessary. These techniques involve using physical materials to

generate sounds synchronized to the video recordings.

Designing digital tools for sound design that enable craftspeople to use environmental

sounds creatively poses a few interaction design challenges. Sound design tools should

allow some form of interaction or control of a sound and facilitate a suitable sound

space for novel sound exploration instead of asking designers to search through a large

sound effect library [6]. Currently, from a technological perspective, editing or modifying

a pre-existing recorded sound based on its perceptually relevant properties is difficult

when using traditional sound editing tools [12]. In the last few years, generative AI

models based on deep neural networks for music have successfully demonstrated their

capabilities in generating novel creative musical artifacts [13, 14]. Such algorithms are

steered or controlled using semantics such as the type of instrument to be used in the

composition or the pitch of the sound [15, 16]. These innovations pave the way for

developing steerable generative models for environmental sound effects, enabling novel

sound exploration and the development of Creative Support Tools (CSTs) [17] for sound

design.

This thesis investigates approaches to designing and implementing steerable

generative AI models and CSTs for sound design. We also investigate ways

to perceptually evaluate such steerable models and build our understanding

of the challenges and opportunities of applying such models in a practice-

oriented sound design environment.

1.1 Motivation

Our everyday sonic environment is usually composed of music, speech and a myriad

of environmental sounds [4]. Often, sound designers work with environmental sounds

that lack the rhythmic and harmonic structures normally found in musical compositions.

Let’s consider an example where a sound designer is tasked with augmenting a video

with the sound of footsteps. The sound of the footsteps is governed by the semantic

and material properties of the environment where the footsteps occur. I use the term

semantic properties to describe the attributes of audio that affect human perception of

sound [18]. I use this term to describe the properties of non-musical sounds that cannot

be described by acoustic attributes such as pitch or loudness. For instance, semantic

properties of the sound of the footsteps are affected by the material of the floor, whether

it is a hard metal or a wooden surface or whether it is dry grass or snow. Further,
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properties such as the type of shoes worn by the walker, whether the shoes are high heels

or boots, etc., can also impact the sound. While designing sounds for a film, a sound

designer works towards creating a believable and persuasive sound effect that matches

the material environment and the timing and pace of the actor’s movement across the

screen.

Previously, generative AI models for text and images have demonstrated their ability to

generate novel, diverse, and high-quality artifacts. Such models are becoming increasingly

integral to creative practices in the arts and have moved from exclusively being a research

endeavor to finding practical applications [19, 20]. Such models can also be semantically

steered or controlled and have been shown to assist in human-AI co-creation [21–28]

successfully. Thus, in this thesis, we aim to design and evaluate generative audio AI

algorithms as CSTs to assist sound designers in their creative practice.

1.1.1 Technical Challenges

Although existing generative AI algorithms from the domains of text, images, or music

can provide productive avenues for researching generative models and CSTs for audio,

their adoption for sound design has a few challenges:

Lack of strongly labeled environmental sounds datasets for training generative

models: Semantically controllable, “guided” or “steerable” deep neural networks require

training on large, strongly labeled datasets. Steerability or guidance here alludes to

the ability of the algorithm to controllably generate sounds with semantically relevant

attributes and perform continuous fine-grained semantic attribute edits to the generated

sound. There is currently a lack of large semantically well-labeled environmental sound

datasets. This is because, while large datasets of environmental sounds can be readily

recorded in the wild, semantically labeling them is expensive, time-consuming, and prone

to errors due to human annotator subjectivity [29, 30]. Therefore, there is a need to

design steerable generative algorithms for sound design that provide semantic attribute

guidance without the supervision of labeled data.

Need for support for sound design-specific creative tasks such as morphing:

Sound designers often strive to create new and distinct sound effects for their creative

work. Designers usually record new sounds or use techniques such as “sound morph-

ing” [31] to generate new source material. Sound morphing refers to the process of grad-

ually transforming one sound into another to generate novel sounds and hybrid timbres.

Such techniques are useful for creating unreal but plausible sound effects, such as those
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made by fantastical alien-like creatures in movies [31]. Although current state-of-the-art

generative models can generate high-quality plausible sounds, they are not designed to

support other creative tasks, such as morphing or the pursuit of creating semantically

“in-between” or hybrid sounds, which are crucial to supporting the creative practice of

sound design. Therefore, there is a need to design generative algorithms for sound design

that can provide novel exploration methods to generate semantically hybrid sounds.

Lack of perceptual methods to evaluate the descriptive qualities of sound:

Generative algorithms for sound design must be evaluated on their ability to generate

sounds based on descriptive qualities such as smoothness or goodness of the morphed

sound or realism or plausibility of the generated sound [13, 32–36]. Further, sound design

tools should be evaluated for their steerability or ability to control or semantically edit

the generated sound’s user-defined descriptive semantic properties such as “brightness” or

“tinniness” (to indicate the presence of high pitched components). Typically, generative

models are evaluated using objective quality metrics such as lack of distortion or noise

in the generated artifacts [37–44]. Such objective metrics are faster to evaluate but fail

to find meaningful differences between descriptive perceptual measures. Further, they

fail to evaluate the ability of the model to semantically edit sounds continuously and in

a fine-grained way. Therefore, there is a need to devise novel ways to evaluate sound

design algorithms perceptually for the descriptive qualities of their generated sounds and

their ability to steer generation using subjective listening tests.

Need to understand the opportunities for generative models in sound design

practice: Generative models are well studied for their potential to support co-creation

in the human-AI interaction literature for music [15, 16]. And yet, despite the growing

adoption of such models as co-creation tools for music production [45], very few empirical

studies exist to assess their potential to offer new possibilities to the practice of sound

design. Further, most human-AI interaction studies for audio focus on the applicability

of steerable interfaces to empower novice users in their creative goals [15, 16, 46–48].

Expert sound design practitioners spend years developing their creative design process

and building inventories of sounds to apply in their next design project [4]. As such,

their needs, expectations, and ways of working with AI-based tools differ from those of

novices. Thus, it is necessary to explore how generative audio models can assist expert

sound designers in their creative practice using specifically designed studies.

The above challenges pave the way for this thesis’s computational aims. In the next

section, I expand on these aims and ground them in a human-centered approach for

designing and evaluating AI-based creative support tools for sound design.
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1.1.2 Human-Centeredness in Design

“all art algorithms, including methods based on machine learning, are tools

for artists; they are not themselves artists.”

—Aaron Hertzmann, In Arts, 2018 [22]

Ben Shneiderman’s human-centered AI (HCAI) interaction design philosophy [49] argues

for developing AI with a human-centered orientation. That is, while innovations in AI

technologies bring high automation, there is also a need for a high level of human control

to build trustworthy systems. Further, while most AI projects often aim to replace

humans or fully automate tasks, he proposes to add value by building “supertools” to

amplify or boost human abilities. This design philosophy is central to the aims of this

thesis. Instead of creating entire compositions and automating sound design pipelines,

this thesis aims to design and implement steerable AI-based Creative Support Tools

(CSTs) that assist sound designers in creating individual sound units to employ in their

creative compositions. The sound designers will eventually be the creators and owners

of the resulting creative work product.

Digital tools are increasingly becoming integral to all aspects of our lives [50], especially

in creative art practices [51]. As creative practitioners in the domain of new media

arts increasingly demand more effective digital computer systems, tool designers must

incorporate more human-centered design principles when developing such digital tools.

I list a few below:

Encouraging exploration: Tools for creativity should empower users to explore the

system’s potential, starting with a basic set of capabilities and allowing them to go

deeper when needed [17]. Current AI-based tools offer exploration using a pre-defined

set of controls, typically designed by the system’s developers. There is thus a need

to design CSTs to offer the ability to explore the AI-generated design space based on

semantics defined by the system’s end-user.

Steering by way of interactive controls: A central tenet of the HCAI design is

steering intelligent supertools using control panels that enable fine-grained control [17,

49, 52]. These control panels resemble the steering controls for other interactive systems,

such as video games. They can be slider-based fader controls or knobs, such as those

found on modern music synthesizers, to guide or steer the output generated by the AI-

based tool. Currently, AI-based tools that support text-based interactions usually do

not afford the ability to granularly steer generation for creative tasks that need fader-like

controls. This research aims to explore avenues to address this gap.
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Designing for non-experts: Another key design principle for human-AI interaction is

accommodating users of all experience levels [17, 52]. With the rapid advancements in

AI technologies, the research community is increasingly emphasizing using crowdsourced

platforms to evaluate the outputs of such algorithms. Often, participants on such plat-

forms are not audio experts and may not understand technical jargon such as “morphs”

or the quality of “sound progression”. Thus, this research aims to design perceptual

evaluation procedures that minimize the complexity during evaluation for non-experts.

Designing for creative engagement in practice: As AI-based tools become more

integral to creative pursuits, there is a need to evaluate such technologies beyond just their

relevance, efficiency, or error-free performance [17, 53]. There is a need to understand

how the properties emerging from such data-driven systems, such as unpredictability

in AI-generated responses or ambiguity in the emergent properties of the AI-generated

representational spaces, can add value or benefit or be leveraged by creative practitioners

for their work.

In summary, focusing on the technical challenges outlined in this thesis from a human-

centered approach, this research aims to design and evaluate generative algorithms for

creative support tools for sound design. Such tools should:

• Enable exploration using user-defined semantic attributes to steer or guide a gen-

erative model trained on large, unlabeled environmental sound datasets.

• Facilitate steerable ways to support creative tasks such as morphing sounds.

• Be subjectively evaluated through listening tests by listeners of varied experiences

for descriptive qualities such as realism or sound progression.

• Be studied for their creative engagement in the creative professional practice of

sound design.

These requirements form the foundational aims of this thesis.

1.2 Thesis Aims

My overall research aims are to design interactive generative algorithms and CSTs to

empower sound designers with additional tools in their creative work. I envision CSTs

with interfaces that allow multi-dimensional semantic sound space exploration, enabling

designers to create and discover new sound effects. I aim to design this interactivity with
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“low thresholds, high ceilings, and wide walls” [49], i.e., tools that are easy for novices

to use yet provide ambitious functionality for expert use.

Following the requirements outlined in the previous section, I now formulate the following

research questions (RQs) for this thesis:

• RQ1 How can we perform exploration using generative audio models trained on

unlabeled data to generate environmental sounds using user-defined semantic at-

tributes?

• RQ2 How can we build steerable generative audio models that support creative

sound design tasks such as audio morphing?

• RQ3 How can we perceptually evaluate audio generated using generative audio

models for their descriptive semantic qualities using non-experts on crowdsourced

platforms?

• RQ4 How can steerable generative audio models assist professional sound designers

in their creative practice?

1.3 Thesis Structure

This thesis has seven chapters organized as shown in Figure 1.1.

Chapter 1 introduces the aims and contributions of this thesis.

Chapter 2 outlines the theory of sound design, the human-centered AI framework, foun-

dational audio concepts, and the technical background of various generative algorithms

used in this thesis.

Part I: Designing interactive generative audio models. In the first part, I discuss

the design and implementation of the steerable deep learning algorithms for sound design.

Chapter 3: User-Defined Semantic Attribute Guidance from Unlabeled Train-

ing Data addresses RQ1. This chapter addresses the human-centered aim of encourag-

ing exploration and steering of the AI-based tool using user-defined controls. I introduce

a novel algorithm that perceptually guides environmental sound generation using user-

defined semantic controls. This framework operates on a generative model trained on



8 1.3. Thesis Structure

Figure 1.1: Overview of thesis structure

unlabeled sounds. In this method, users can create synthetic sounds to communicate

their creative goal and “query” or “search” the generative model to explore and discover

novel sound samples. Further, using synthetic sounds, users can define semantic guidance

controls to perform semantic edits to the generated sounds. The method is evaluated

using objective metrics and perceptual listening tests to demonstrate its effectiveness in

providing semantic guidance while training on unlabeled sounds.

Chapter 4: Audio Morphing with Text-to-Audio Models addresses RQ2. This

chapter addresses the aim of steering AI-based tools using granular, human-understandable

fader-like controls to support sound-design-specific creative tasks such as morphing. I

introduce a novel algorithm to granularly morph the semantics of two sounds generated

by pre-trained text-to-audio (TTA) models. Using this method, sound designers can

smoothly morph sounds generated by disparate text prompts and increase or decrease

the emphasis on semantic word descriptors while morphing. This technique allows sound

designers to explore the semantic sound space generated by TTA models in novel ways.

This method can operate on any pre-trained TTA model without requiring extra train-

ing procedures or fine-tuning. This method is evaluated using objective metrics and

perceptual listening tests to demonstrate its effectiveness in generating hybrid sounds

“in-between” text prompts.

Part II: Evaluating interactive generative audio models In the second part of
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this thesis, I discuss the evaluation aspects of the steerable generative models for sound

design.

Chapter 5: Perceptually Evaluating Descriptive Qualities of Sounds addresses

RQ3. This chapter addresses the research gap of the lack of perceptual methods to eval-

uate the descriptive qualities of AI-generated sounds. Further, it addresses the human-

centered aim of designing such methods for non-experts in audio. I introduce novel visual

constructs to perceptually evaluate the temporal descriptive qualities of sounds generated

using deep learning models. I demonstrate the effectiveness of such visual constructs by

designing listening test interfaces to evaluate sounds in rank ordering and pairwise com-

parison types of tasks. Using musical instrument sounds and noisy environmental sounds,

I conduct experiments to investigate how the quality of responses varies with audio and

task complexities. I validate the effectiveness of using such constructs by conducting

a study on a crowdsourced platform and verifying their effectiveness in improving the

overall quality of responses in a listening test.

Chapter 6: Understanding opportunities for generative models in sound de-

sign addresses RQ4. This chapter aims to understand how AI-based tools can benefit

creative engagement in sound design practice. This chapter describes a study conducted

with professional sound designers to understand the challenges and opportunities of us-

ing generative models for their creative work. We designed two interactive generative AI

models as CSTs and invited professional sound design practitioners to apply the CSTs in

their creative practice. Through this study, we develop a novel understanding of how such

models can support creative exploration for sound design and provide recommendations

for future researchers designing CSTs using generative models.

Chapter 7 summarizes the findings in this work, discusses its limitations, and outlines

future directions for designing CSTs for sound design using generative models.

1.4 Contributions

The research contributions from this thesis to the field of human-AI interaction, based

on research contribution categories outlined in Wobbrock et al. [54] are—

1.4.1 Empirical Contributions

• This thesis empirically demonstrates that generative models trained on unlabeled

sounds can support creative exploration in a user-defined way. By leveraging the
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emergent properties of the latent space of the model, we can controllably generate

sounds based on user-defined semantic attributes.

• This research shows that existing pre-trained TTA models can be used for novel

tasks such as morphing and be steered to generate perceptually plausible morphs

between two or more sounds interactively in a fine-grained way.

• This work demonstrates that visual metaphors designed to articulate audio quality

constructs effectively improve the quality of responses in perceptual listening tests

conducted using non-experts on crowdsourced platforms.

• This work develops a novel understanding of generative models supporting creative

exploration for expert practitioners in sound design. Further, design recommen-

dations for future AI-based tool designers developing CSTs at the intersection of

human-AI interaction and sound design are offered.

1.4.2 Artefact Contributions

• A novel algorithm “Example-based Framework” (or EBF) for perceptually guided

sound effect generation for environmental sounds. This method can perform per-

ceptually relevant semantic edits on generated sounds in real-time.

• A novel algorithm “MorphFader” that morphs two or more sounds generated using

different text prompts. The method can emphasize word descriptors while morph-

ing sounds semantically. I developed interfaces over this algorithm to demonstrate

its effectiveness in real-time.

• A novel paradigm to evaluate temporal descriptive qualities of sounds using visual

metaphors. Reusable interfaces to conduct perceptual listening tests using visual

metaphors are designed and developed as contributions to the research community.

• A frontend framework “Crowd-Eval-Audio” to conduct perceptual listening tests

on crowdsourced platforms. This framework needs minimal infrastructure (no

database installation required, etc.). It can be extended to conduct listening

test experiments using any experimental design (such as repeated trials or Latin

squares) on crowdsourced platforms.

• Two web-based interfaces as CSTs for sound design. Each interface wraps around

two steering techniques developed for generative algorithms. Using these interfaces,

sound designers can steer the generative models using either synthetic sounds or

perform sound edits directly in the learned latent space of the generative models.
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42040

• Kamath, P., Li, Z., Gupta, C., Jaidka, K., Nanayakkara, S., & Wyse, L. (2023).

Evaluating Descriptive Quality of AI-Generated Audio Using Image-Schemas. In

Proceedings of the 28th International Conference on Intelligent User Interfaces. IUI

’23: 28th International Conference on Intelligent User Interfaces. ACM. https:

//doi.org/10.1145/3581641.3584083

Although I am the primary first author of the abovementioned publications discussed in

this thesis, these contributions would not have been possible without the collaboration

with my co-authors. Therefore, in the remainder of my thesis, I use the first person

plural “we” in the subsequent chapters to reflect their contributions.

The following is a list of publications and technical reports I have co-authored that com-

prise important elements of this thesis, to which I have made substantial contributions

and which have paved the way for the more independent work I have published listed

above. I briefly discuss these publications in Chapter 2 technical background.

• Kamath, P., Islam, T., Gupta, C., Wyse, L., & Nanayakkara, S. (2023). DCASE

Task-7: StyleGAN2-based Foley Sound Synthesis. DCASE Foley Sound Synthesis

https://doi.org/10.1109/taslp.2024.3393741
https://doi.org/10.1109/taslp.2024.3393741
https://doi.org/10.1145/3613904.3642040
https://doi.org/10.1145/3613904.3642040
https://doi.org/10.1145/3581641.3584083
https://doi.org/10.1145/3581641.3584083
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Challenge 2023. Online. Technical Report. https://dcase.community/docume

nts/challenge2023/technical_reports/DCASE2023_Kamath_6_t7.pdf

Awarded 3rd place.

• Gupta, C.*, Kamath, P.*, Wei, Y., Li, Z., Nanayakkara, S., & Wyse, L.* (2023).

Towards Controllable Audio Texture Morphing. In ICASSP 2023 - 2023 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP).

ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE. https://doi.org/10.1109/icassp49357.

2023.10096328.

(* denotes equal contribution).

• Gupta, C. Wei, Y., Gong, Z., Kamath, P., Li, Z., & Wyse, L. (2022). Parameter

Sensitivity of Deep-Feature based Evaluation Metrics for Audio Textures. In 23rd

International Society for Music Information Retrieval Conference (ISMIR). ISMIR

2022. https://archives.ismir.net/ismir2022/paper/000055.pdf.

• Wyse, L., Kamath, P., & Gupta, C. (2022). Sound Model Factory: An Integrated

System Architecture for Generative Audio Modelling. In Artificial Intelligence in

Music, Sound, Art and Design (pp. 308–322). Springer International Publishing.

https://doi.org/10.1007/978-3-031-03789-4_20.

• Gupta, C., Kamath, P., Wyse, L. (2021). Signal Representations for Synthesizing

Audio Textures with Generative Adversarial Networks. In Simone Spagnol Davide

Andrea Mauro and Andrea Valle, editors, Proceedings of the 18th Sound and Music

Computing Conference (pp 159 - 166). Sound and Music Computing Network,

Axeasas/SMC Network, 2021. https://doi.org/10.5281/zenodo.5113511

1.6 Environmental Impact & Data Attribution

Environmental impact from CO2 Emissions Related to Experiments: In this

thesis, all models were trained using my personal RTX 2080 Ti (TDP of 250W) GPU-

enabled Ubuntu desktop computer that I self-assembled in 2019. I also used an RTX

3090 (TDP of 350W) GPU-enabled Ubuntu desktop computer located in the lab at NUS.

Both machines have a carbon efficiency of 0.432 kg CO2 eq/kWh. Over the last 4 years of

my Ph.D. candidature, an approximate total of 608 hours of model training/computation

was performed on RTX 2080 Ti hardware, and 528 hours of training/computation was

performed on RTX 3090 hardware. Total emissions are estimated to be 145.49 kg CO2

eq. Which is equivalent to 72.9 kgs of coal burned. Estimations were conducted using

https://dcase.community/documents/challenge2023/technical_reports/DCASE2023_Kamath_6_t7.pdf
https://dcase.community/documents/challenge2023/technical_reports/DCASE2023_Kamath_6_t7.pdf
https://doi.org/10.1109/icassp49357.2023.10096328
https://doi.org/10.1109/icassp49357.2023.10096328
https://archives.ismir.net/ismir2022/paper/000055.pdf
https://doi.org/10.1007/978-3-031-03789-4_20
https://doi.org/10.5281/zenodo.5113511
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the “MachineLearning Impact calculator”1 presented in [55]. One of my aims in this

research has been to develop algorithms for steering or inducing control over pre-trained

models. As in Chapter 4, instead of training new models, I aim to sustainably reuse

large foundational models trained by other research organizations and develop steering

algorithms based on the emergent properties of the AI model to leverage them as CSTs

for sound design.

Data and Model Attribution: In this research, I have used datasets that are freely

available under the Creative Commons Licensing agreement for research purposes. I

designed and implemented two generative algorithms for sound design in this research.

The first algorithm (in Chapter 3) is trained on an audiovisual dataset recorded for

research purposes by researchers at the Massachusetts Institute of Technology (MIT),

United States of America (USA), released in 2016. This dataset is available under the

Creative Commons attributed Non-Commercial Licence2. I trained this algorithm on

another dataset of water-filling sounds recorded by researchers at the ‘Arts & Creativity

Lab’ at the National University of Singapore (NUS), led by Dr. Lonce Wyse. The second

algorithm (in Chapter 4) uses a pre-trained text-to-audio (TTA) model developed by

researchers at the University of Surrey, United Kingdom (UK), released in 2023. This

model was downloaded from the research group’s HuggingFace3 repository and is made

available under the Creative Commons Non-Commercial Share-Alike Licence4. This

model was trained on large audio datasets that conform to the UK copyright exception for

data for academic research. More details on the datasets can be found in the respective

chapters in this thesis.

1https://mlco2.github.io/impact#compute
2https://creativecommons.org/licenses/by/4.0/legalcode
3https://huggingface.co/
4https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

https://mlco2.github.io/impact#compute




Chapter 2

Background & Related Work

Chapter Synopsis

This chapter discusses the background and technical foundations for the work presented

in this thesis. First, we provide a background on the sound design practice and the

human-centered design approach of this thesis. Next, we provide system-level technical

foundations for the work presented in this thesis. We provide some background on the

types of audio and their representations used in this research. Finally, we provide high-

level architectural details on the deep neural networks used in implementing the artifacts

resulting from this thesis.

Research on deep neural networks, specifically generative models, has grown significantly

in recent years. This chapter’s technical details provide a brief overview of the generative

models used in this thesis without aiming to comprehensively survey each architecture

discussed.

2.1 Sound Design

Sound design is the creative use of sounds to produce engaging cinematic experiences for

various consumer media [2, 31]. It is a multi-faceted practice that is both highly technical

and artistic in nature and involves creating ‘new’ sounds. Susini et al., [4] define ‘new’

sounds as those that cannot be found in existing sound databases or recorded sounds

that cannot be used in a given context without being manipulated or modified. Sound

design is the deliberate use of such sounds to create immersive experiences in music

15
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composition or other media. Typically, sound designers focus on working out the sonic

details required to enrich or complement the visual information presented in films and

games [3]. They also focus on communicating additional non-verbal information through

interactions in games or product design [4].

Previously, in the “Art of Thought” [56], Graham Wallas proposed a generalized cre-

ativity model that consisted of 4 phases: preparation, incubation, illumination, and

verification. Similarly, for the specific purpose of sound design, Susini et al. [4] proposed

a model which involved three discrete successive stages: Analysis assisted by Exploration,

Creation, and Validation [4, 57] with the last two being set in an iterative loop until the

sound converges towards an optimized solution [58] or the creative goal of the sound

designer. The Analysis stage is a research-focused phase, where designers are involved

in understanding the perceptual requirements of the project using their own knowledge

and background in psychoacoustics and sound cognition. It also involves the purposeful

exploration of a large inventory of existing sounds and field recording (recording out-

side of the studio) of new sounds. In the Creation stage, sound designers manipulate

the sounds or synthetically create new sounds in line with the specifications from the

Analysis stage. This stage may layer together various sound samples to create montages

as a final artifact. The final stage consists of Validating the sound specimens created

either informally based on the designer’s intuition or more formally using listening tests

(especially while designing sounds for products [57]).

Throughout the sound design process, designers need to employ different modes of work-

ing - as a researcher during Analysis and exploration phase, as a programmer or employ-

ing their tools-based expertise during the Creation phase, and as a qualitative researcher

or tester during the Validation phase. Through these phases, they also employ different

listening techniques such as causal, semantic, or reduced listening [3]. Such listening

techniques help designers to associate sounds to sources (causal), associate information

or meaning (semantic) to them, or focus on fine-grained timbre-specific details of the

sound (reduced) when listening. These modes of working help them develop “Sonic Vo-

cabularies” [58] and “Sound Palettes” for various current and future projects.

Given this background on the sound design workflow, the primary aim of this thesis is

to design AI-based CSTs that can integrate well into a sound designer’s creative process.

I aim to study areas within the sound design process where such AI-based CSTs can be

integrated and the challenges of adopting them in others.
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2.2 Human-Centered AI for Creativity Support

AI systems are trained to reveal patterns within the training data. Their effectiveness,

however, may be limited by the strategies used to collect the training data, the system’s

ability to respond to extreme cases, etc. The Human-Centered AI (HCAI) framework [49],

by Ben Shneiderman, is a design philosophy that considers the AI system’s limitations

and foregrounds the design of such systems in empathy for its human users. It bases the

design practice on specific guidelines to ensure human understanding and intuition about

the AI system for building trustworthy and reliable applications. While most guidelines

cater towards designing critical decision-making systems, such as those that assist in

healthcare and other recommender systems, in this thesis, I extend the four principles

outlined below to apply them to designing AI-based creative support tools.

The design community has long relied on Shneiderman’s 8 golden rules for designing

interactivity on user interfaces [52]. These rules include guidelines on preventing errors,

keeping users in control (instead of the tool being in control), and reducing short-term

memory load to build comprehensible and controllable systems. While such rules still

apply to designing AI systems, the HCAI framework builds on them to include important

guidelines such as “steerability by way of interactive controls”. Furthermore, research on

creativity support outlines guidelines to design systems that “support exploration” and

enable use by both “novices and experts”. Finally, researchers studying creativity support

offered by new media technologies [53] ground evaluation of such tools for their “creative

engagement in practice” beyond a typical work-oriented view of relevance or usefulness.

AI technologies can empower new media artists with novel forms of expression by pro-

viding powerful Creative Support Tools (CSTs) to support their creative work. The

research in HCAI and digital tools for AI-based creativity support is novel and growing.

This thesis builds upon and contributes to the HCAI literature and design guidelines,

focusing on designing and evaluating controllable AI models for the specific purpose of

sound design.

2.2.1 Support For Exploration

Digital tools offering creativity support are largely based on the hypotheses about how

creativity happens in the human mind [59]. In her seminal work to understand human

creativity and outline its definition, Margaret Boden first defines a conceptual space

in people’s minds that can be explored and transformed to give rise to novel creative

concepts [59]. These conceptual spaces are created based on prior structures of thoughts
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and concepts learned by individuals throughout their lifespans. Creativity by exploration

of this conceptual space enables us to develop novel ideas and explore diverse creative

possibilities. Representational spaces generated by trained AI systems are analogous to

these conceptual spaces that can be explored to discover novel artifacts1.

In creativity research, performing exploratory searches to find relevant ideas from previ-

ous work and combining them in novel ways is well known [17, 59]. For instance, creative

visual artists have been known to explore such conceptual spaces for ideation in the do-

mains of fashion [60] and while creating new images [24, 61]. Researchers regularly use

metaphors and visual sketches for ideation for music as an alternative to browsing and

searching for existing sounds [62]. For audio AI-based tools, recently, Scurto et al. [63]

developed tools based on reinforcement learning algorithms and studied user exploration

behaviors for the generated high-dimensional representational spaces.

In [64], HCAI researchers outline the principle of “capturing intent, rather than input”

to build interactive supertools. They propose designing AI-based systems that capture

explicit user intent and implicitly provide additional steering or guidance to the AI based

on the user’s interactions with the tool. John Maeda, a pioneer of mathematical and

computational arts, argues for capturing this explicit and implicit creative intent by

emphasizing the term “software sketches”. An initially poorly defined piece of code or

software can be iterated to help move the process of exploration and idea generation

forward [65]. Such a “sketching” or “intent capturing” process requires fluid engagement

with the design material at hand for rapid exploration and feedback.

In line with these ideas of rapid exploration by sketching the user’s creative intent, this

thesis designs and evaluates generative models that allow real-time exploration of the AI’s

representational space to generate and edit novel sounds. We provide novel affordances

to explore the representational space based on their user’s definition and sonification of

semantics in the sound they want to create.

2.2.2 Steering By Way of Interactive Controls

Steerable CSTs for sound design allow designers to controllably generate sounds with

semantically relevant attributes and perform continuous fine-grained semantic attribute

1Although we use the conceptual space analogy to understand AI’s representational space, it
should be noted that Boden uses computer programs, and in the latest revision of the book, she
uses AI models, to create an analogy of conceptual spaces in the human mind. In this section, I
reverse this analogy to develop an intuition about exploring the AI’s representational space for
this thesis.
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edits to the generated sound. The current landscape of generative algorithms includes

CSTs [17, 50] that are either fully autonomous or support co-creation as Mixed-Initiative

Creative Interfaces (MICIs) [66, 67]. Fully autonomous AI-based CSTs usually accept

simple user inputs to generate artifacts with less granular control. For instance, consider

the example of Jukebox [68], which generates full music compositions based on inputs

such as artist, genre, and lyrics but does not provide control for improvisations. AI-based

co-creation CSTs, on the other hand, feedback and improvise on user creation in the

domain of visual arts [25, 26], in writing [27, 28], in UX design and engineering [69–72],

and new musical interface design [73]. Researchers have also worked at the intersection of

explainable AI (XAI) and arts to explore novel ways to steer AI-based CSTs for creative

endeavors [74, 75]. In the field of audio, machine learning models have long been used for

creating music [76], from established tools such as Wekinator [77] to the more recent AI

music performance art [78]. While steerability for CSTs generating music would mean

improvising on a particular piece of music, for the pursuit of sound design, steerability

would refer to granularly editing the pitch of a dog bark or changing the surface material

for footsteps.

Generative models for sound generation previously relied on specialized labels designed

by the AI model’s developers [13, 79, 80]. Although such models enable building steerable

interfaces for CSTs [15, 16, 48, 81, 82], they focus solely on music generation and less on

the needs for sound design. Recently, diffusion-based text-to-audio (TTA) models have

democratized how we generate sounds using AI models. Sound designers of all experience

levels can use natural language to leverage AI models in their creative work. While such

TTA models train on large datasets and can generate diverse sounds, discrete text prompt

interfaces do not provide avenues to granularly edit or morph the generated sounds. For

instance, text-based controls provide little ability to continuously and granularly control

the ability to morph or edit the surface material for footsteps from metallic thuds to a

snowy crunch.

In this thesis, we address this gap and develop ways to granularly steer AI algorithms. We

provide avenues to semantically edit and morph the sound generated by the generative

algorithms with an aim to allow sound designers to explore the AI model’s conceptual

representational space better and in a fine-grained way.

2.2.3 Design For Both Novices and Experts

A prominent guideline for designing creative supertools is the principle of designing in-

terfaces for users of all experience levels [17, 52]. Typically, perceptual listening tests
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for evaluating audio generated by AI algorithms are conducted using expert listeners in

a controlled lab-based listening environment. In-person listening tests require a consid-

erable amount of the researcher’s time and effort and are expensive to set up. Thus,

there is an increasing push within the audio deep learning community to move towards

crowdsourced platforms such as Amazon Mechanical Turk (AMT) to conduct these tests.

AI-generated audio is typically evaluated on quality concepts for sound progression, such

as the quality of a morph or how two sounds are interpolated with each other. While

such concepts can be easily understood by audio experts, non-experts on crowdsourced

platforms may find such technical jargon difficult to understand.

An ideal audio quality description in a listening test should explicate the complexity

observed in the sound space in a human-understandable way. Outlining such complex

qualities verbosely using language makes for lengthy task instructions, which reduces

participant interest in such tasks [83] and affects the overall quality of responses. Fur-

thermore, the design of a typical listening test interface involves listening to two or more

sounds in comparison to each other or with respect to a reference. As the number of

sounds increases (for instance, a MUSHRA test [84] sometimes involves listening and

comparing up to 12 sounds with each other), the demands on the listener’s audio mem-

ory also increase, thus increasing the task’s complexity. In contrast, for example, image

annotation or evaluation tasks often require only a simple ’glance-and-click’ action [29].

Recent human computation research on crowdsourcing shows that as task complexity

increases, the quality of responses decreases, and participants more frequently abandon

such tasks or submit poor quality responses [83, 85]. This thesis investigates ways to

design intuitive interfaces for conducting perceptual listening tests that minimize au-

dio task complexity. It expands on existing human-computation and crowdsourcing re-

search [83, 85–87] and develops and evaluates methods for audio listening tests that assist

novice listeners in understanding descriptive audio qualities under evaluation and in turn,

help researchers collate better and more meaningful responses from such listening tests.

2.2.4 Designing For Creative Engagement In Practice

Most empirical studies in human-computer interaction (HCI) and HCAI usually focus

on the ability of the interfaces to assist users in performing a set of tasks in an efficient

and error-free way. For instance, most AI-based co-creation studies in music generation

using expert practitioners focus on their ability to efficiently articulate their creative

intent using the system [16, 48, 88]. Other studies focus on how visual artists [24] and

engineering designers [72] use AI-based algorithms for creative decision-making. These
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studies observe the role of the intelligent tool in relation to the designer and measure the

effectiveness and performance of the designer in completing the predefined task to assess

the applicability of AI-based CST. Instead, Jonas Löwgren suggests that creative work

practices could benefit from evaluating CSTs based on “use-qualities” of the system.

That is, to evaluate CSTs based on qualities that usually do not arise from a work-

oriented view. Some of such use-qualities include pliability and ambiguity. [17, 53, 89].

Löwgren defines pliability as a property of a responsive design material that can be used

to create new artifacts in a highly involved, rapid, iterative, and exploratory creative pro-

cess. A user “makes a move”, the system generates an outcome, and the user perceives

the outcome and proceeds to further make changes in a tight loop. He further defines

ambiguity as another positive use-quality to be considered when designing and evaluating

interactivity. Generally, ambiguity in interactions is considered to be detrimental in HCI

as it stands in opposition to efficiency and transparency. Previously, researchers argued

that unpredictability and non-determinism could be detrimental to the user experience of

an AI system [90]. However, Gaver et al. showed that for digital art tools, ambiguity can

be effectively used to develop close personal engagement and enable reflection while cre-

ating art [91]. While ambiguity may make easy interpretation of the system impossible,

it provokes discussions and forces users to participate in meaning-making [89].

In their recent work, Caramiaux et al. [23] showed that artists usually embrace emergent

and unpredictable behavior in generative AI systems rather than consider it a limitation

while creating visual art. In this thesis, we take inspiration from prior work to explore

this aspect of pliability and meaning-making with ambiguity in design with AI-based

CSTs and explore the role of unpredictability and non-determinism in generative audio

AI output for the creative work practice of sound design. Furthermore, we explore

the notion of ambiguity in conjunction with the sound design workflows and processes

outlined previously in section 2.1.

2.3 Technical Background

2.3.1 Audio data classes and representations

2.3.1.1 Audio Data Classes

While generatively modeling sounds using deep neural networks, researchers generally dis-

tinguish between the signal representations of speech, music, and environmental sounds.
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Figure 2.1: 2D Spectrogram representations for different sound types.

This is because speech and music usually contain harmonic frequencies, the knowledge of

which can be useful while modeling them. On the other hand, environmental sounds can

be noisy and contain multiple inharmonic components, making modeling them difficult

compared to their harmonic counterparts. Thus, the current research landscape treats

the three classes as separate generative modeling tasks.

Figure 2.1 visually demonstrates the structural differences between representations of

the different types of sounds. Figure 2.1(a) shows a “pitched sound” made by a brass

instrument rising in pitch in steps, and (b) shows a speech signal of a woman saying

“Interactive Generative Audio Models for Sound Design.” Such sounds usually have

structured representations and are governed by the presence of a fundamental frequency

(or f0) and its multiples (or its harmonics) at each time step. On the other hand, envi-

ronmental sounds have unstructured representations. For instance, the example shown

in Figure 2.1(c) is an impact sound made by a drumstick hitting a metal surface. Such

sounds have sharp attack transients (onset or the beginning of the sound event) with

multiple inharmonic and noisy frequency components, making them harder to model

than pitched sounds.

In this thesis, we focus on modeling environmental sounds. We also focus on a subclass of

environmental sounds called “audio textures”. Audio textures are sounds generated

by the super-position of multiple similar acoustic events [36]. Textures can also be

considered as sounds whose informational content asymptotes after a certain amount of

time [92]. Audio textures can be a series of discrete sound events, such as the sound of

footsteps or the sound of a wooden drumstick repeatedly hitting a hard metal surface.

They can also be noisy and continuously varying, such as the sound of water filling a
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container. Typically, parametric synthesizers [93–96] or physics-based models [97–99]

can be used to generate synthetic textures. Although synthesizers provide fine-grained

control during generation, the generated sounds usually sound synthetic and may lack

the timbres associated with real-world sounds.

2.3.1.2 Audio Data Representations

Audio can be represented in many ways. When recorded using a microphone, the air

pressure changes in the sound wave are converted to an analog electrical signal [100].

This signal is “sampled” or digitized to an array of floating point numbers representing

the amplitude of the sound at a given point in time. This one-dimensional (1D) array

of floating point representations is called a raw audio waveform. The quality of the

digitized sound is governed by properties such as sampling rate. This rate is the number of

samples digitized from the analog signal per second, measured in Hertz (or Hz). Typically,

most deep learning algorithms use sampling rates of 16kHz (i.e., the analog sound is

converted into 16, 000 samples per second of the sound wave), 22.05kHz, or 44.1kHz.

Higher sampling rates can faithfully preserve and digitize the high-frequency components

from the analog signal in a less lossy fashion. Larger sampling rates result in larger 1D

arrays and require higher computational processing and larger GPU-enabled computers

while training.

Many higher-level representations can be derived based on this low-level raw audio. Time-

frequency (TF) representations are often derived from raw audio when modeling sounds

using deep neural networks. TF representations are two-dimensional (2D) matrices rep-

resenting frequency on the y-axis and time on the x-axis. They can be used to visually

demonstrate the spectromorphology [101] of the sound or how its frequencies change over

time. One commonly used TF representation is the 2D spectrogram generated by the

Short-Time Fourier Transform (STFT) [93]. STFT of a sound sample is calculated by

computing a Discrete Fourier Transform (DFT) [93] across a small moving time window.

A 2D STFT spectrogram can be considered a stack of individual DFTs performed for

small time windows across the entire length of the sound sample. Note that each TF bin

of the STFT is a complex number, where the real part is the magnitude of the spectro-

gram, and the imaginary part is the signal’s phase within that window. Such complex

valued spectrograms can be edited and “inverted” back into the 1D raw audio domain,

which can then be converted to analog using digital-to-analog converted (DAC) to be

played over headphones or speakers. Often, we use the magnitude of the spectrogram

without the complex-valued phase for modeling using deep neural networks.
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The choice of audio representation depends on the modeling task [102] and further governs

the deep learning network architecture. This choice also depends on the type of sound

being modeled - whether the sound is pitched or inharmonic with many noisy compo-

nents. Typically, when generatively modeling raw audio, autoregressive architectures

such as Recurrent Neural Networks (RNNs) [103, 104] are used. Network architectures

such as Generative Adversarial Networks (GANs) [105] are usually trained on 2D log-

magnitude spectrograms, which are computed by taking the logarithm of the absolute

value of the magnitude spectrogram. Human hearing is logarithmic with regards to am-

plitude and frequency [106]. Thus, we typically use log-magnitude spectrograms or use

mel spectrograms by transforming the frequency-axis of the spectrogram to mel-scale

(or quasi-logarithmic scale) [100, 107]. Usually, only magnitude or log-magnitude spec-

trograms are used to train GANs. Some architectures, such as in [108], train on both

real and imaginary parts (phase) of the STFT. Other architectures use log-magnitude

spectrograms in conjunction with Instantaneous Frequency (IF or unwrapped phase)

representations [13] during training and generating musical sounds with great success.

A spectrogram’s magnitude and phase are both needed to invert a sound to the raw

audio domain during inference. Generative models are usually trained to estimate the

magnitude of the spectrogram. The phase (or the imaginary component of the STFT)

is usually estimated from the generated magnitude spectrogram. Currently, there are

three popular methods to estimate phase from magnitude. First, iterative optimization-

based algorithms such as Griffim-Lim can be used. And second, using a pre-trained

HiFi-GAN [109] vocoder which converts spectrogram to raw audio. And third, using

IF representations and reconstruction [13] techniques. In our previous work [110], we

used a fourth technique, namely, Phase Gradient Heap Integration (PGHI) [111], to

reconstruct the phase for environmental sounds. PGHI uses the mathematical relation-

ship between the magnitude of Gaussian windowed STFT and the phase derivatives in

time and frequency of the Fourier transform to reconstruct the phase using the magni-

tude spectrogram. We showed that by using PGHI, we can reconstruct clear and sharp

transients (attack and decay of the sound event) better than IF representation and re-

construction methods. Further, PGHI is a closed-form estimation method, and unlike

the iterative optimization-based Griffin-Lim algorithm, it is faster to compute phase in

real-time. This real-time nature is immensely useful for real-time applications of sound

design.

With this background, in this thesis, we develop algorithms using environmental audio

data sampled at 16kHz and leave extrapolating our algorithms to higher sampling rates

for future work. Further, we utilize Gaussian windowed log-magnitude spectrograms

when using GANs to train environmental sounds. Due to its ability to reconstruct sharp
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transients in the resulting sounds, we use PGHI to estimate the phase of the sound during

generation.

2.3.2 Generative Algorithms for Audio Generation

Currently, a multitude of generative model architectures exists for generatively model-

ing environmental sounds. Each architecture solves a certain set of problems and has

its limitations. For instance, autoregressive architectures, or models that predict fu-

ture values based on past values, such as Recurrent Neural Networks [103, 104, 112],

WaveNet [33], or Transformers [113, 114], trained on raw audio, can generate sounds of

indefinite duration. However, the time taken for their responses is usually large, which

makes their adoption in practice difficult. On the other hand, non-autoregressive models,

such as those based on Generative Adversarial Networks (GANs) [105], are responsive

but generate samples of a pre-defined duration, usually a few seconds long. Such mod-

els are expressive in their ability to generate novel sounds or morphs [115] compared to

autoregressive architectures [116]. Recently, researchers have successfully explored an-

other class of fixed-duration sound models using Denoising Diffusion Probabilistic Model

architectures (DDPM, or simply diffusion-based models) [117, 118] that generate better

quality and more diverse sounds than GANs.

Autoregressive models trained on raw audio samples need long inference time and have

large training memory requirements. Generating a single raw audio sample requires con-

sidering the samples that existed before it. For example, to generate one second of sound

sampled at 16kHz, the last sample needs to maintain the context of the previous 15,999

samples. Thus, as the audio length increases, the context length increases, quadratically

increasing the computational complexity of training such models using architectures such

as Transformers [119]. Furthermore, using auto-regressive models, the time taken to gen-

erate a few seconds of sound might be in the order of minutes. Low latency and shorter

system response times are important for designing and building user-driven CSTs for

sound design. Therefore, this thesis uses GANs and diffusion-based TTA models to

model environmental sounds and design CSTs.

In the next few sections, we outline the technical architectural details of GAN and

diffusion-based TTA models used in this research.
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2.3.2.1 Generative Adversarial Networks

Sounds occurring in the real world are considered to belong to a highly dimensional data

distribution that is also sparse; that is, not all points in this high-dimensional space result

in believable or perceptually plausible sounds. For instance, consider a 2D spectrogram.

The probability that a randomly generated spectrogram (randomly selecting frequencies

for each time window) will generate a plausible or believable sounding sample is small.

Thus, GANs aim to achieve three main goals: (1) Reduce the dimensionality of real-world

datasets to create a learned distribution, called “latent spaces”, which can be randomly

sampled to generate plausible sounds. Although the learned representation has fewer

dimensions than the real-world data distribution, it is still high-dimensional for human

visualization or cognition. (2) Generate a “disentangled” latent space, where semantically

different sounds are clustered separately. (3) Allow for smooth interpolation between

sounds within the learned latent space, enabling creative exploration and discovery of

novel “in-between” sounds.

GANs can be trained to generate sounds controllably. Broadly, two approaches exist

for training controllable GANs. One approach involves training models using labeled

datasets in a supervised way [120, pg. 137]. For such models, generation is controlled

using pre-defined labels. This approach is popular with most GANs trained on musical

instruments. For such models, sounds are generated by controlling for pitch or instrument

type [13]. Another approach is where the models are trained on unlabelled datasets, and

controllability is inferred using unsupervised methods [120, pg. 142]. This approach is

especially useful for environmental sounds as they can be recorded easily “in-the-wild”,

but annotating them with labels reliably is difficult. GANs can be trained on large,

unlabeled environmental sound datasets to generate an expressive latent space, which

can be used to search, generate, and manipulate new sounds. Recently, researchers have

been working at the intersection of explainable AI (XAI) and arts to explore novel ways

to explore such latent spaces for creative endeavors [74, 75]. In this thesis, we aim to

develop algorithms to facilitate the exploration of the latent space of a GAN trained on

unlabelled environmental sounds in a human-understandable way.

Figure 2.2 shows a GAN architecture schematic. GANs generate the expressive latent

spaces Z by simultaneously training two competing networks: a generator network called

G and a discriminator network D (also known as the critic). The generator function G

maps a randomly sampled noise vector from a prior known distribution to the training

data space. The discriminator D receives either a sample generated by G or a true

data sample and must distinguish between the two [105]. The noise is sampled from a

“prior” (the known or assumed noise distribution) Z and passed through the generator
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Figure 2.2: Schematic of a Generative Adversarial Network

network to generate the fake sample. At the same time, a real sample xreal from the

training data is sampled. The discriminator D is incentivized to discriminate the real

from the fake sample. Similarly, the generator G is incentivized to fool D to generate

samples that closely resemble data from the training distribution. In deep learning

parlance, the generator G is said to be pitted against the discriminator D in a “minmax”

game. In this setup, the latent space is structured by G based on feedback from D

alone without direct access to the training data [104]. Training G this way results in

the generation of high-quality samples resembling real-world data. However, it also leads

to entanglement in the latent space [104, 121] Z and a structure where the individual

dimensions do not correspond to semantic features of the underlying data. One way to

induce additional structure to this latent space is by conditioning the training on relevant

attributes, i.e., train both G and D with extra information regarding the input (e.g.,

pitch or instrument type when training on musical instrument sounds). This additional

conditioning information is represented as c∗in in Figure 2.2.

Formally, say X is the training data distribution, and z is the prior defined on the noise

variable, then G(z; θg) formalizes a trainable generator function that maps noise z to

the data space X with θg as trainable parameters for the generator. We also define

the discriminator as D(x; θd), where θd are the trainable parameters of network D. This

network D outputs a single scalar value representing whether the input sample came from

the training distribution X or the generated fake data. The D is trained to maximize

the probability of assigning the correct label to samples from real data (as real) and from

G (as fake). Further, G is trained to fool the generator by creating samples that closely

resemble real data. Please see appendix A.1 for the commonly used loss formulations for

GANs.

For audio, researchers have successfully used a type of GAN architecture called Progres-

sive GAN (or PGAN) [122], to generate high-quality musical sounds. To train PGANs,

we start with low-resolution spectrograms and then progressively increase the resolution
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Figure 2.3: Schematic of a StyleGAN

of the generated output during training by synchronously adding new layers to the gener-

ator and the discriminator network. By modifying the network architecture this way, we

can generate high-resolution spectrograms that can reconstruct transients (event onsets

and decays) in the sound events [110] faithfully. This training strategy has been useful for

conditionally training GANs for music [13, 123] and environmental sounds [110, 116, 124].

In summary, by training PGANs, we can generate a learned representation, also termed

as a latent space Z of the model, which can be randomly and continuously sampled to

generate diverse, high-quality audio samples that resemble naturally occurring sounds

for qualities such as plausibility or realism. Further, by conditioning the training using

labeled data, we can semantically control the generation of sounds. However, there are

challenges in the latent space organization of PGAN, namely semantic entanglement,

which makes it difficult to induce semantic control when trained on unlabeled sounds.

2.3.2.2 StyleGAN Architectures

Previously, we discussed a GAN architecture where the training procedure generates a

latent space Z. This network architecture and training procedure leads to unavoidable en-

tanglement and less control over individual semantics during the generation when trained

on unlabelled sounds. To circumvent this problem, Karras et al. [125, 126] propose an

architecture called StyleGAN, where they re-designed the generator G architecture as

shown in Figure 2.3. The generator of a StyleGAN accepts the noise vector z along with

any optional conditioning cin to generate an intermediate latent space W. This architec-

tural change leads to the automatic, unsupervised disentanglement of high-level semantic

attributes within the intermediate latent space. It also enables smooth, intuitive, and

perceptually linear semantic interpolation operations while generating sounds [125].

Figure 2.3 and 2.4 shows a high-level and detailed schematic of a StyleGAN respectively.

The generator is split into a mapping network Gm and a synthesis network Gs. The
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Figure 2.4: Schematic of the generator network of a StyleGAN

noise latent z is passed through Gm to generate W. The resulting w vector, w ∈ W, is

the intermediate latent or style space. The Gs also accepts a noise vector responsible

for localized, stochastic variations in the generated samples. The mapping network Gm

is a sequence of fully connected layers, denoted by “FC”. The “style vector” from the

intermediate latent space generated this way is fed into each layer of the synthesis network

Gs. Each layer of this synthesis Gs is termed a “synthesis block,” which scales the input

to this network with the style vector, followed by convolutions and normalization layers.

The synthesis network generates a spectrogram output that can be inverted to raw audio.

In this work, although we empirically select the number of FCs and synthesis blocks as

hyperparameters during training, we do not directly modify the architectural components

of this network. More details regarding both Gs and Gm can be found in [125] and [126].

Although StyleGANs were originally developed for computer vision tasks, we use the ar-

chitecture to generate audio by training on 2D spectrogram representations. Recently, in

the DCASE Foley Sound Synthesis Challenge [127, 128] models trained unconditionally

using StyleGAN architectures ranked in the top-3 submissions. The challenge involved

generating novel, high-fidelity, and diverse sounds for seven sound classes, such as dog

barks, footsteps, motor vehicle sounds, etc. For our submission2 we trained StyleGANs

conditionally and unconditionally, i.e., without using labels. We trained one StyleGAN

2Please see submission titled “Kamath NUS task7 trackB 2” under track B:https://dcase.
community/challenge2023/task-foley-sound-synthesis-results which ranked third in the
challenge.

https://dcase.community/challenge2023/task-foley-sound-synthesis-results
https://dcase.community/challenge2023/task-foley-sound-synthesis-results


30 2.3. Technical Background

Figure 2.5: Schematic of GAN Inversion

network using one-hot class identifying vectors for the conditional system. We trained

seven StyleGAN networks for the unconditional system, one model for each class. Al-

though both systems performed better than the baselines provided during the challenge,

our unconditional system submission was ranked third (top three selected of 27 submis-

sions) in the challenge. Furthermore, in our experiments, sounds generated by StyleGAN

were of better quality than PGAN. This demonstrates the efficacy of using StyleGANs in

our work to generate sounds using unlabelled datasets. Please see the technical and other

evaluation details for the StyleGAN architecture in our technical report in appendix A.2.

2.3.2.3 GAN Inversion

GAN Inversion, or GAN Encoding, is the process of inverting or encoding an image or

audio sample into the latent space of a pre-trained GAN (either PGAN or StyleGAN).

This inversion process results in a latent vector z (or, in the case of StyleGAN, the latent

vector w), which can be used to reconstruct it using the generator network [129] faithfully.

This technique is especially useful for performing edits to the image or sound in the latent

space of the GAN. Figure 2.5 shows a schematic for GAN inversion. Say we have a GAN

trained on a large dataset of clapping or tapping sounds. Randomly sampling a z vector

can generate a fake but plausible-sounding sample using the generator G as x = G(z).

Using GAN inversion, we can find the approximate or “nearest” latent vector, which can

faithfully reconstruct a real sound x∗, using an Encoder network or function E, such

that zinv = E(x∗). Using the inverted latent vector zinv, we can easily perform latent
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Figure 2.6: Schematic of a Latent Diffusion Model conditioned on text cap-
tions. Originally from [137], it was recreated with changes for this thesis.

space exploration around the inverted vector and perform semantic edits to the sound in

the latent space of the GAN. In this thesis, we primarily use StyleGAN for generation.

We thus design an Encoder that inverts real-world samples into the W space of the

StyleGAN, i.e., estimate w vector instead of z as shown in the Figure.

2.3.2.4 Latent Diffusion-based Text-to-Audio Models

Diffusion-based [130] text-to-audio models [117, 131–134] have recently become popular

as an alternative to GANs for text-based conditional audio generation. In this paradigm,

the model is trained on large audio datasets in conjunction with weakly labeled text

captions. Diffusion models are trained in two stages: (1) In the first stage, or the forward

diffusion process, the training samples are noised by progressively adding a small amount

of Gaussian noise in a series of pre-determined steps known as a noise schedule. (2) In the

reverse diffusion process, the noisy sample is denoised by estimating the noise per step

of the diffusion process. Typically, a denoising U-Net [135] is used to predict the amount

of Gaussian noise to remove from the sample. Diffusion models for audio generally work

on noising and denoising spectrogram representations. Such models usually require large

computational resources for both training and inference. To circumvent this, researchers

recently have used diffusion models to noise and denoise the latent vectors of a pre-trained

Variational AutoEncoder (VAE) [136] instead of spectrograms. Such Latent Diffusion

Models (or LDMs) are more efficient regarding resource consumption and inference times

than spectrogram-based diffusion models.
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A schematic of an LDM is shown in Figure 2.6. During training, the sound input is

first encoded into the latent space of a pre-trained VAE using ε, resulting in the latent

vector z. This latent vector is progressively noised in T steps using a forward diffusion

process to generate zT . Note that the distribution of the final zT vector resembles that

of Gaussian noise. In the reverse diffusion process, the LDM tries to estimate the noise ϵ

added during the forward process in each step. This ϵ estimate is progressively denoised

from the zT vector in T steps to obtain the final z0 vector. The ϵ noise estimate is

predicted using a U-Net [135] based network.

The text conditioning used to control generation is injected into the diffusion process

using a series of cross-attention layers [113] in the U-Net. At a high level, cross-attention

can be considered a function that computes the semantic similarity between a text caption

and the to be generated sound. LDMs are trained such that sounds and their associated

text captions have high semantic similarity. The U-Net noise predictor is a deep neural

network with a series of cross-attention layers. The text prompt is iteratively injected

into these layers for every step of the diffusion process.

The final estimated z0, after T diffusion steps, is decoded using the VAE’s decoder

network to reconstruct the spectrogram. A randomly initialized zT and a text-prompt

conditioning are input to the LDM during inference. That is, only the reverse diffusion

process is executed. The cross-attention layers in the U-Net ensure the predicted noise

is adjusted based on the distance in the VAE’s latent space and the difference in the

text-based semantic conditioning space.

GAN-based architectures are prone to mode collapse in a multi-class setting. Diffusion-

based architectures, on the other hand, can generate better-quality and more diverse

sounds than GANs [117], especially when using text-based conditioning. However, it

is challenging to control semantics described in the text prompt granularly. Further,

using LDMs to perform creative tasks such as morphing between two prompted sounds

is unexplored. We aim to address these challenges in this thesis. We use existing,

foundational pre-trained TTA LDMs such as AudioLDM [132] to build CSTs for sound

design.

2.4 Summary

This chapter provided theoretical and technical foundations for this thesis. Figure 2.7

visually summarizes the theoretical and technical concepts discussed in this chapter,

along with the chapters and research questions they are associated with.
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Figure 2.7: A conceptual diagram outlining the theoretical and technical con-
cepts applied and discussed in each chapter and its corresponding research ques-
tion.

First, this chapter provided a theoretical background on sound design workflows, includ-

ing the stages of creating sounds for various media. It also outlined sound designers’ use

of sound palettes and different listening techniques. Next, HCAI approaches that this

thesis builds upon and contributes towards were outlined. Human-centered approaches

grounded in supporting exploration for creativity, steering by interactive controls, de-

signing listening tests for non-expert use, and studying the use-qualities of generative AI

models for sound design were discussed.

This chapter additionally provided technical background on the deep learning represen-

tations and architectures used in this thesis. Insight into the decisions based on our

prior work in Chapter 1, Section 1.5 were provided. Different audio representations used

in deep learning were outlined. A background was provided on using Gaussian win-

dowed log-magnitude spectrograms for environmental sounds in conjunction with PGHI

for phase reconstruction. Next, we summarized that StyleGAN architectures were best

suited for inducing semantic guidance when trained on unlabeled data, as the disen-

tangled intermediate W space can be utilized to provide semantic guidance. Finally,

as recent Latent Diffusion Models (LDMs), such as AudioLDM, have demonstrated re-

markable capabilities in generating sounds based on text prompts, we summarized that

extending their functionality to steer sound generation in a fine-grained way to be a

productive avenue of research for sound design CSTs.





Chapter 3

User-Defined Semantic Attribute

Guidance from Unlabeled

Training Data

Chapter Synopsis

In this chapter1, we address RQ1. In Chapter 1, we motivated the need for modeling

semantically unlabeled sounds. In this chapter, we specifically target modeling the sub-

class of environmental sounds, namely audio textures. We propose a method to induce

semantic control over a StyleGAN unconditionally trained on unlabeled texture datasets.

We develop an example-based framework to determine guidance vectors for audio tex-

ture generation based on user-defined semantic attributes. Our approach leverages the

semantically disentangled latent space of the StyleGAN. Using a few synthetic examples

to indicate the presence or absence of a semantic attribute, we infer semantic guidance

vectors in the latent space of the StyleGAN to control that attribute during generation.

Our results show that our framework can find user-defined and perceptually relevant

guidance vectors for controllable generation for audio textures. Furthermore, we demon-

strate an application of our framework to other tasks, such as selective semantic attribute

transfer.

1With minor modifications from:
Kamath, P., Gupta, C., Wyse, L., & Nanayakkara, S. (2024). Example-Based Framework for
Perceptually Guided Audio Texture Generation. In IEEE/ACM Transactions on Audio, Speech,
and Language Processing (Vol. 32, pp. 2555–2565). Institute of Electrical and Electronics
Engineers (IEEE). doi: 10.1109/taslp.2024.3393741
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3.1 Introduction

Audio textures are a subclass of environmental sounds, such as water filling a container or

a wooden drumstick repeatedly hitting a metal surface. Guided or controllable generation

of such sounds using deep neural networks is usually achieved by conditioning generative

models using semantically labeled data. For instance, impact sound textures can be

semantically guided using object or material properties of the impact surface, and a

continuously varying water-filling texture can be guided by attributes such as the fill

level of the container. While large datasets for audio textures can be readily recorded,

labeling these sounds using semantic attributes such as material hardness or fill level is

difficult. Therefore, to control generation, we develop a method to infer the vectors for

semantic attribute guidance without the supervision of large labeled datasets.

Generative adversarial networks (GANs) [138] such as StyleGANs [125, 126] generate se-

mantically disentangled latent spaces by learning the most statistically significant factors

of variation within a dataset. Such disentangled latent spaces can be analyzed to find

guidance vectors for controllable generation. We thus analyze the disentangled latent

space of a StyleGAN to find guidance vectors based on user-defined semantic attributes

to control generation.

This thesis proposes a method that uses audio examples to guide latent space access

and navigation. Similar to music information retrieval (MIR) techniques such as query-

by-example [139–142] and query-by-humming [143–146] we generate synthetic sound ex-

amples representative of the semantic attribute we want to control during generation.

We encode these examples into the latent space of a StyleGAN unconditionally trained

on real-world audio textures. Then we use these latent embeddings to define guidance

vectors in the latent space along which desired semantic attributes can be systematically

varied during texture generation. As shown on our webpage2, we use these guidance

vectors to guide texture generation for various user-defined semantic attributes such as

“Brightness”, “Rate” or “Impact Type” for impact sounds and “Fill-Level” for the con-

tinuously varying texture of water filling.

We validate the effectiveness of our method for user-defined semantic guidance of tex-

ture generation through a comprehensive attribute rescoring analysis. We also conduct

perceptual listening tests to evaluate the effectiveness of our method in changing specific

attributes for various randomly generated sounds. In summary, our contributions are:

2https://purnimakamath.com/thesis-related/chapter 3/

https://purnimakamath.com/thesis-related/chapter_3/


Chapter 3. User-Defined Semantic Attribute Guidance from Unlabeled Data 37

• An Example-Based Framework (EBF) to find user-defined attribute guidance vec-

tors to control audio texture generation semantically.

• A synthetic audio query approach for latent space exploration of a generative

model.

• An application of our framework for semantic attribute transfer between textures.

3.2 Related Work

3.2.1 Supervised Controllability in Audio

Generative models for music, such as [13, 79], enable controllability by training on

datasets with labels. This supervision helps organize the model’s latent space according

to the timbre-specific features in the datasets. Musical instrument datasets are usually

labeled during dataset creation [79], and such labels are used to conditionally train gener-

ative models using attributes for pitch, loudness, or instrument timbres [13, 147]. Further,

some architectures [123] additionally condition generation by extracting attributes such

as sharpness or warmth automatically from the sound using feature extractors such as

Audio Commons [148] and Essentia [149]. Similarly, DDSP [80] based architectures, such

as DDSP-SFX [150], extract attributes such as loudness and pitch from the sounds to

condition generation. While such supervised training methods are highly effective for

modeling musical instrument sounds, their effectiveness is limited in textures due to the

lack of large-scale semantically labeled audio texture datasets. Further, the attributes

used to control generation for inharmonic audio textures differ from those of musical

sounds [98, 99]. For instance, when synthesizing impact sounds, we are more likely to be

interested in controlling the object or material properties (such as impact surface hard-

ness, etc.) than attributes such as pitch or loudness typically associated with musical

sounds. Currently, there is a lack of audio texture datasets with such object or material

property labels that can be used for supervised training.

To circumvent this lack of attribute labels for audio textures, MorphGAN [115] uses

features extracted from the penultimate layer of a classifier for supervision to generate

smooth texture morphs. Similarly, DarkGAN [124] is trained on soft labels distilled from

an audio tagging classifier [151] trained on tags from the AudioSet ontology [152]. The

Sound Model Factory [116] trains a GAN, which is used to create novel timbres followed

by an RNN trained on sounds produced from the GAN and conditioned on points along

smoothly parameterized trajectories through the GAN latent space. These supervised
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training methods rely on an additional class or parametric information while training

generative algorithms. Since GANs, particularly StyleGANs can disentangle the latent

space based on semantic attributes in the training data [126], our research explores finding

user-defined semantic directions in the latent space of a StyleGAN to guide generation

without the need for any explicit conditioning or labeled data during training.

3.2.2 Unsupervised Controllability in Audio

In computer vision, algorithms such as [153, 154] leverage StyleGAN’s ability to disentan-

gle the latent space to find directional vectors for editing semantics on images. Similarly,

in audio, GANSpaceSynth [155] applies the GANSpace algorithm to control a pre-trained

GANSynth trained on musical instruments in an unsupervised manner. More recently,

in computer vision, Semantic Factorization (SeFa) [154] performed better than other un-

supervised algorithms to find vectors for controllable generation in the latent space of a

pre-trained GAN. This method decomposes the layer weights that create the disentangled

representation to find the vectors for maximum variation. Such vectors are then used

to edit semantics on unconditionally generated images. However, the directional vectors

generated using SeFa must be semantically labeled manually after observing edits across

multiple samples.

For speech and music [156, 157] infer controllability based on supervision from a few

labels. For images, FLAME [158] uses supervision from a few positive-negative image

pairs by semantic editing and inverting real images in a StyleGAN’s latent space. Direc-

tion vectors for semantic attribute editing are found by optimizing for cosine similarity

between the pairs’ difference vectors. In our work, we modify the FLAME method for

audio textures and propose using a few fully synthetically generated examples to assist in

deriving vectors in the latent space of a StyleGAN for attribute controllability. A cluster

of similar synthesized audio examples is inverted [159] to define clusters in StyleGAN’s

latent space. A prototype [160] latent vector is derived from each cluster and is an ab-

stract average of the semantic cluster they represent. Since such prototypes are designed

to differ in a specific attribute, the difference vector between them in the latent space

can be used for guiding audio texture synthesis and for semantic attribute transfer.
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3.2.3 Synthetic Texture Generation

While real-world sounds could also be inverted to find latent representations in a trained

StyleGAN, they are much more difficult to control than parametric acoustic sound syn-

thesizers [93–96] or physics-based models [97]. For our inharmonic textures, we use a

physically informed synthesis technique in William Gaver’s seminal work on auditory

perception [98, 99]. His approach is based on the idea that humans hear and describe

sound events in terms of their sources and source attributes better than the acoustic

properties of the sounds themselves. The sound events in Gaver sounds are modeled on

the physics of the objects interacting to produce the sound, such as the hardness of the

material under impact or the force of impact. Gaver [98] refers to analysis-by-synthesis

as updating synthesis parameters to match a target sound, which we use to discover

StyleGAN latent vectors with synthetic audio queries.

Although algorithmically synthesized sounds can sound unnatural, we employ them only

for querying and searching the latent space of a StyleGAN. Multi-event synthetic tex-

tures can be quickly and easily generated using an analysis-by-synthesis approach with

attributes adequate for this exploration task.

3.3 Proposed Framework

As shown in Figure 3.1, we partition our goal to find semantic attribute vectors for con-

trollable texture generation and propose a framework comprised of the following modules:

• A Generator module (Gs) of a StyleGAN trained on real-world audio for high-

fidelity texture synthesis,

• A GAN Encoder (E), also known as a GAN inversion network, to encode an audio

example into the latent space of a pre-trained StyleGAN,

• A parametric Gaver synthesizer for sounds used to locate desired points in the

latent space of the StyleGAN,

• An algorithm to derive semantic attribute clusters and prototype vectors for guid-

ing semantic synthesis trajectories in the latent space of the StyleGAN.

Chapter 3 introduced the StyleGAN architecture central to this framework. Figure 3.1c

illustrates our framework (during inference). Gs is a StyleGAN generator and E is the
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Figure 3.1: Schematic outlining the modules within our framework. (a) A
StyleGAN’s generator. Mapping network Gm maps latent space Z to interme-
diate latent space W (Rδz → Rδw). Synthesis network Gs maps an intermediate
latent vector w to spectrograms S (Rδw → Rf×t). (b) Schematic of an Encoder
E which inverts spectrograms to the intermediate latent spaceW (Rf×t → Rδw).
(c) Schematic of our framework during inference.

GAN Encoder. (i) We generate synthetic Gaver sounds for a semantic attribute we want

to control. In the diagram above, we demonstrate this using “Rate”, or the number of

impact sounds in a sample, as the semantic attribute. We encode these synthetic sound

examples into the latent space of a StyleGAN to find their w embeddings. (ii) Next,

we derive the semantic attribute clusters and generate prototypes using the algorithm

elaborated in section 3.3.4. The direction vector to guide generation for that semantic

concept is indicated by “d”. (iii) Shows how we can use direction vector “d” to guide

generation on any randomly generated audio sample to increase or decrease “Rate”.

3.3.1 GAN for Audio Textures

While our framework can be applied to derive attribute guidance vectors within the

latent space of any pre-trained generative model, such as Variational Autoencoders [34],

Progressive GANs [123], or StyleGANs for audio, in this paper, we demonstrate this

using StyleGAN2 [126] trained on audio textures. Figure 3.1 (a) shows a schematic of a

StyleGAN2’s generator. We have excluded the discriminator section of StyleGAN2 in the

schematic for brevity. Overall, a StyleGAN2’s generator can be modeled as a function

G(.) that maps a latent space Z, where z ∈ Rδz , to the higher dimensional spectrogram

space S ∈ Rf×t, such that S = G(z). Here δz is the dimensionality of the Z space, and
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f , t are the number of frequency channels and time frames of the generated spectrogram,

respectively. StyleGANs further learn an intermediate representation W, where w ∈
Rδw , between that of Z and S via a mapping network Gm(.). This intermediate latent

space further disentangles factors of variation as compared to the latent Z space [126].

Further, a synthesis network Gs(.) maps the w vector to a spectrogram S. A StyleGAN’s

intermediate W latent space is considered to be more disentangled, in terms of the

various factors of variation in the training data, than its Z space [125]. We thus operate

our framework and method in the intermediate latent space W to find semantically

meaningful directions for controllability during generation.

3.3.2 GAN Encoder

Figure 3.1 (b) shows a schematic of our Encoder. While GANs learn to map latent space

embeddings to real-world sounds, GAN inversion techniques learn inverse mapping, i.e.,

from the real-world sounds to the latent space embeddings. We adapt the encoder model

from [159] to estimate a w vector from an audio spectrogram randomly sampled from a

pre-trained StyleGAN2. This model is based on the ResNet [161] architecture. Residual

Network (or ResNet) architectures use stacks of residual blocks (a set of convolutional

layers with skip connections) to learn residual functions with reference to the layer in-

puts. Such architectures have been previously successfully used for large-scale audio

classification tasks [162].

The input to the Encoder, as shown in Figure 3.1 (b), is a spectrogram of the audio

sample to be inverted. Previously, [163, 164] have shown that masking techniques for

spectrograms are effective while learning generalized vector representations for audio. We

extend this idea of arbitrarily masking the spectrogram to learn a w vector representation

from the Encoder. This approach is especially useful during inference to generalize the

encoder to synthetic Gaver sounds. It assists in projecting the synthetic sounds into

a reasonable part of the latent space even though the encoder (or the GAN) is not

directly trained on these sounds. Note that while training the Encoder, the weights

of the StyleGAN2 generator are frozen. We only optimize the Encoder weights during

training.

For noisy textures, such as the sounds of water filling a container, we further employ am-

plitude thresholding of the spectrogram during training. This thresholding ensures that

the encoder ignores the low-level noise and focuses on the spectrogram’s most prominent

events and frequencies while estimating the w vector. To train the Encoder, we modify

the loss function from [159] to estimate only in the W space instead of Z as:
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L = Ez∼N (0,1),w=Gm(z),S=Gs(w)[∥S−Gs(E(S))∥22 + ∥w − E(S)∥22] (3.1)

In Equation 3.1, Gm(.) is the mapping network, Gs(.) is the synthesis network of the

StyleGAN2, and E(.) is the Encoder that inverts a spectrogram S into the W space.

While training the encoder, we randomly sample a z from the Z space to generate the

target spectrogram S using G(z). We estimate the w for this spectrogram using the

encoder E(S). For the first loss term, we pass the inverted w through the synthesis

network of the generator Gs(w) and find the mean squared error (MSE) loss between

the original and reconstructed samples. The second term is the MSE loss between the

actual and the estimated w vector.

The loss function of the original Encoder algorithm [159] additionally used a percep-

tual similarity loss term called LPIPS [165] that calculates the distance between image

patches to preserve the perceptual similarity of the estimated images. In our experi-

ments, we evaluate the need for such perceptual loss terms for our task compared to our

loss formulation in Equation 3.1.

3.3.3 Synthesizing Examples with User-Defined Semantics

To generate audio examples for querying the GAN latent space, we use two Gaver syn-

thesis methods - (1) based on physical parameters of the interacting objects and (2)

based on object resonance as a series of bandpass filters. The first method is useful in

generating sharp impact sounds or dripping sounds, and the second is for producing a

larger variety of impacts and scraping sounds. More formally, a synthetic impact sound

can be described as -

F (t) =
∑
n

ϕne
ζntcosωnt (3.2)

where F (t) describes the generated sound, ϕn is the amplitude of the nth partial, ζn is

a damping constant, and ω is the frequency of the partial,
∑

signifies a sum over the

total number of partials. From an ecological perspective, each component in the equation

controls a physical aspect of the objects interacting to generate the impact sound. For

instance, ζ in the equation controls the material hardness, ϕ controls the force of impact,

and ω and n control the object’s size.
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Figure 3.2: Schematic for generating semantic attribute clusters, prototypes
wp1 and wp2, and the direction vector d.

Method 2 creates impact and scraping sounds by passing Gaussian noise N (0, I) through

band-pass and fade filters. The amplitude of the impact sound governs the force of im-

pact, while the frequency bands, together with damping provided by linear or exponential

fade filters, govern the material of impact of the sound.

3.3.4 Generating Semantic Clusters, Prototypes, and Guid-

ance Vectors

Having generated synthetic Gaver sounds, we invert them into the latent space of the

StyleGAN to generate the w embeddings. We then cluster the sounds in the W space to

generate prototypes as shown in Figure 3.2.

Assume, for example, that we want to derive directional vectors to control the attribute

of “Brightness” of an impact sound. We define brightness as an attribute that indicates

the presence or absence of high-frequency components in a sound. We generate a cluster

of Gaver sounds where the semantic attribute is present (represented by blue dots in the

figure) and another cluster of Gaver sounds where the semantic attribute is absent (or

“dull” impact sounds represented by orange dots). We find the prototypes wp1 and wp2

representative of each semantic attribute cluster using Algorithm 1.

To generate our prototypes, we adopt a technique from computer vision for generating

Eigenfaces. First, we shift or center the inverted w embeddings of the synthetic samples

by subtracting the center of mass of the W space, namely w avg, from them. w avg

is the the mean w vector encoded from our training set. These mean-subtracted w

embeddings record how each synthetic sample differs or varies w.r.t the mean sample in
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Algorithm 1: Get Prototype

Input:
Wn is a matrix of {w0, ...,wn} encoded synthetic samples as column
vectors, such that Wn ∈ Rδw×n;
w avg is a column vector for the center of mass of W space;

Output:
w ptype the prototype representation;

Function GetPrototype (Wn, w avg):
W ∈ Rδw×n←Wn −w avg; ▶Subtract w avg from each column of W
U,S,V ← SVD(W);
s ← diag(S); ▶Extract singular values from diagonal

matrix S as vector s;
w ptype ← w avg + usus

Tw; ▶w is mean w sample vector from Wn

▶us ← U[:, argmax(s)]
return w ptype

the W space. Next, we stack all the mean-subtracted w embeddings for the synthetic

samples in a semantic cluster together as matrix columns. We perform singular value

decomposition on this matrix and select the component associated with the maximum

singular value to construct the prototype. The intuition behind doing this is that after

decomposition, the component with the highest singular value has the most common

prominent feature amongst all the analyzed samples, i.e., the semantic attribute being

modeled. Furthermore, by modeling the mean-subtracted w embeddings, we ensure that

we model the variations in the w vectors better instead of focusing on the shared common

features encoded by w avg. Constructing a prototype this way is more robust to outliers

or artificial synthesis artifacts.

The difference between the w embeddings of the two prototypes wp1 and wp2, denoted

as direction vector (d), can be used to continuously and sequentially edit the semantic

attribute as follows -

wedited = w + α ∗ d (where 0 < α < 1) (3.3)

where w is a randomly chosenW vector, ‘+’ and ‘*’ indicate element-wise operations, and

α is a continuous scalar parameter that signifies step size. Larger values of α correspond

to a greater degree of semantic attribute edit on the sample. Further, using −d reverses

the direction of the edit. The edited sounds can be reconstructed by passing the wedited

through the StyleGAN2 synthesis network Gs(.).
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3.4 Experiments

3.4.1 Datasets

We use two audio texture datasets in our experiments: (1) The Greatest Hits dataset [166]

to demonstrate the effectiveness of our approach on impact sounds and (2) a Water filling

a container dataset [167] for continuously varying audio textures. Through these two

datasets, we demonstrate our method’s effectiveness in covering a range of event-based

and continuously varying textures.

3.4.1.1 The Greatest Hits Dataset

This dataset contains audio and video recordings of a wooden drumstick probing indoor

and outdoor environments by hitting, scraping, and poking different objects of different

material densities. We use this dataset to explore the rich timbres arising from the inter-

actions between the wooden drumstick and various hard and soft surfaces such as tree

trunks, dirt, leaves, metal cans, ceramic mugs, carpets, soft cushions, etc. The dataset

contains approximately 10 hours of denoised audio split into 977 audio files, each approx-

imately 35 seconds. Each file contains impact sounds interacting with different types of

objects. We split the audio files into consecutive 2-second sounds sampled at 16kHz to

train our StyleGAN2 unconditionally. We develop semantic attribute clusters, proto-

types, and attribute guidance vectors for the attributes Brightness (whether the sound

contains mostly high-frequency components or is dark or dull containing mostly low-

frequency components), Rate (whether the number of impact sounds in a sample is high

or low), and Impact Type (whether the sounds are sharp impacts or scraping/scratchy

sounds made by dragging the stick across the surface).

3.4.1.2 Water filling a container

This dataset [167] contains 50 audio recordings of water filling a container at an ap-

proximately constant rate for an average duration of ∼30 seconds. We develop semantic

attribute clusters, prototypes, and attribute guidance vectors for the continuously vary-

ing attribute of Fill-Level of the container. We sample the recorded audio files using a

sliding window of 100ms to generate approximately 10,000 2-second audio files sampled

at 16kHz to train our StyleGAN2 unconditionally. We choose a small sliding window

size of 100ms to achieve better interpolatability [18] for Fill-Level in the W space of

the GAN.
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3.4.2 Implementation Details

StyleGAN2: We set Z andW space dimensions δz and δw both to 128 and use 4 mapping

layers in the Generator for all our experiments. Further, we use the log-magnitude

spectrogram representations generated using a Gabor transform [168](n frames= 256,

stft channels= 512, hop size= 128), a Short-Time Fourier Transform (STFT) with a

Gaussian window, to train the StyleGAN2 and the Phase Gradient Heap Integration

(PGHI) [111] for high-fidelity spectrogram inversion of textures to audio [110]. For

training the generator and discriminator of the StyleGAN2, we use an Adam optimizer

with a learning rate of 0.0025, β1 as 0.0, and β2 as 0.99.

Encoder Training: We use a ResNet-34 (a stack of 34 residual blocks) [161] backbone as

the architecture for our GAN Encoder network. We use an amplitude thresholding of

-17dB for Water and -25dB for the Greatest Hits. We mask the frequency components

with a magnitude below -17 or -25dB for the respective datasets. We use an Adam

optimizer to train the Encoder with a learning rate of 0.00001, β1 as 0.5, and β2 as 0.99.

Gaver Sound Synthesis: In all our experiments, we use 10 synthetic Gaver examples (5 per

semantic attribute cluster) to generate the guidance vectors for controllable generation.

We outline a cluster-based analysis for real and synthetic sounds using UMAP [169]

visualizations on our supplementary webpage.

3.4.3 Evaluation metrics

For audio quality, we utilize the Fréchet Audio Distance [39](FAD) metric. FAD is

the distance between the distribution of real and synthesized audio data embeddings

extracted from a pre-trained VGGish model. We utilize this metric to evaluate the quality

of sounds generated by inverting the synthetic Gaver sounds and real-world sounds from

the latent space of the GAN.

To evaluate the effectiveness of our method in changing a semantic attribute of a texture,

we perform rescoring analysis. By rescoring, we mean the change in accuracy scores

reported by an attribute classifier before and after the change in the semantic attribute

on a sound. For this, we train an attribute presence or absence classifier based on a

Dense Convolutional Network (or DenseNet) architecture [170]. Previously, [171] showed

that an ImageNet pre-trained model fine-tuned for audio datasets could achieve state-

of-the-art results in environmental sound classification tasks. We adapt the classifier

from [171] using a DenseNet architecture with ImageNet pre-training and fine-tune it
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for our attribute classification task. Please see our supplementary webpage for classifier

architecture and training details.

We begin our evaluation by manipulating an attribute on randomly generated sounds.

We then record how the attribute classifier score changes for those sounds before and

after the manipulation. Further, we evaluate if the attribute change occurs without mod-

ifying other sound attributes. For instance, when editing Brightness, we first analyze

if the intended attribute of brightness changes. We then analyze if other attributes such

as Rate changes with it. As our datasets are unlabelled, to train the rescoring analysis

classifier, we manually curate and label a small subset of sounds. To do this, we selected

approximately 250 samples of 2-second sounds for each semantic attribute under consid-

eration. This manual curation involved visually analyzing the video and listening to the

associated sounds to detect the semantic attribute. For more details on the dataset cura-

tion, please see our webpage. Note that this curated dataset is only used for quantitative

analysis and not to train our GAN or Encoder models.

3.4.4 Baseline Selection

We evaluate our method’s effectiveness in finding user-defined attribute guidance vectors

in the latent space of the GAN by comparing it with an unsupervised method for latent

semantic discovery called closed-form Semantic Factorization (SeFa) [154].

Typically, to evaluate novel methods for controllability, the ideal method would be to

compare the method with a conditionally trained model. If we had a large dataset of

labeled audio textures, we could have trained a GAN conditionally using those labels

for comparison. However, it is difficult to annotate sounds for continuously varying or

fine-grained semantic labels. For example, annotating the sound of water filling to de-

termine the fill level of the container, such as whether it’s 30% or 40% full based on the

sound alone, is challenging. While labeling such sounds is an actively researched topic,

due to the current lack of granularly labeled datasets, we needed a baseline to compare

our work, which did not rely on training with supervision. Based on these considerations,

we chose SeFa as our baseline.

SeFa decomposes the pre-trained weights of a GAN to find statistically significant vectors

for guided generation. Although SeFa is relatively under-studied in the audio domain,

we use it as a baseline for comparison because, like our method, SeFa works on uncondi-

tionally trained GANs. Given the novelty of our task in deriving guidance vectors in a

post-hoc fashion, to the best of our knowledge, the SeFa method is the state-of-the-art

method in this regard. We thus use it for comparison.
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Figure 3.3: (Top Row) Spectrogram examples of guided generation using our
method based on change in the attributes of (a) Rate (increases L to R), (b)
Impact Type (becomes scratchy L to R), and (c) Brightness (decreases L to R).
Note that for each example, the other attributes do not change as one attribute
changes. (Bottom Row) Examples of guided generation for water filling a con-
tainer based on Fill-Level. Note how the Fill-Level and its frequency components
gradually increase from L to R. All sounds can be listened to on our webpage
https://purnimakamath.com/thesis-related/chapter_3/.

3.4.5 Experimental Details

We first conduct ablation studies to understand the effects of individual components of

the loss functions outlined in section 3.3.2. We report this analysis using both rescoring

analysis and FAD scores. Next, we study the impact of the change of an attribute

on other attributes under consideration. We then compare our method (EBF) with the

SeFa method as a baseline. Finally, we qualitatively study the effectiveness of our method

by conducting listening tests. Figure 3.3 shows some spectrogram examples of guided

generation using our method. The standard error of means in all tables in this section

was reported by bootstrapping the samples over 100 iterations.

3.4.5.1 Ablation Studies

We conduct three types of ablation studies in our paper - (1) to study the effect of

different components of the loss function on the Encoder, (2) to study the effect of the

number of synthetic samples needed to create a semantic cluster, and (3) to study the

effect of the magnitude of scalar α in equation 3.3.

Ablating Encoder Loss Components: We first study the effect of using LPIPS and MSE

loss terms with and without thresholding while training the Encoder. Table 3.1 shows the

rescoring accuracy scores for attribute changes for each type of Encoder. (↑) indicates

that higher values are better. We report the accuracy for the main attribute and the

average change reported in other attributes for each attribute change. Ideally, we would

like the main attribute accuracy to be high and the change in other attributes to be low.

For the Greatest Hits dataset, we find that the system with MSE and MSE+Thresholding

https://purnimakamath.com/thesis-related/chapter_3/
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outperforms the one with MSE+LPIPS loss for all attributes. For Water, using an

Encoder with MSE and thresholding works best.

Table 3.2 shows the FAD scores for GAN-generated sounds (column called GAN) and

Encoder reconstructions for each type of Encoder for both GAN-generated and synthetic

Gaver sounds. The FAD Scores were computed based on 10,000 randomly generated

samples compared to the entire training set. We find that the encoder trained using

MSE only or MSE+thesholding outperforms MSE+LPIPS regarding the quality of the

generated audio (FAD scores). Thus, based on this table and Table 3.1, we choose the

Encoder with MSE+Thresholding (qualified with a † in Tables 3.1 and 3.2) as the

best-performing Encoder for both datasets for the remainder of the paper.

Ablating the Number of Gaver Samples: Next, we study the effect of the number of

Gaver samples used to find the guidance vectors for different attributes. We derive

guidance using different N , starting with N=1 to N=5. We observe that as N increases,

the effectiveness of the directional vector edits also increases. Also, such edits preserve

other unedited attributes better with higher N . The samples with different N ’s can be

hlyellowlistened to on our supplementary webpage.

Ablating the effect of the scalar value α: In equation 3.3, the scalar value α governs the

magnitude of the edit performed on the sample w using the semantic attribute direction

vector d. In all our experiments, the value of α is in between [0, 1]. Also, all examples

on our supplementary webpage edit w in linear steps until α = 1. In this section, we

qualitatively study the effect of using a value α > 1, i.e., extrapolating the semantic edits

beyond the magnitude of the difference vector d (or beyond the selected prototype in

the latent manifold). The samples from different α’s can be found on our webpage. We

observe that, for all attributes, for α >= 3, the edited w vectors escape the latent W
manifold and generate noisy or unintelligible samples.

3.4.5.2 Baseline Comparison

Table 3.3 reports the rescoring analysis for each attribute using our method compared

to SeFa. We report the score for change in the main intended attribute being edited

and the average change in other attributes. (↑) indicates higher values are better. Our

method reports better accuracies for change in the main attribute for both datasets than

SeFa.

We further report pairwise attribute edit comparisons to study the effect of change in

one attribute individually on every other attribute. Tables 3.4 and 3.5 show this for the
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Table 3.1: Ablation Studies

Greatest Hits Water
Brightness Rate Impact Type Fill-

Level
Acc.(↑) Avg.

Change
Others
(↓)

Acc.(↑) Avg.
Change
Others
(↓)

Acc.(↑) Avg.
Change
Others
(↓)

Acc.(↑)

EBF:
MSE+LPIPS [165]

0.53 ±
0.08

0.24 ±
0.04

0.64 ±
0.08

0.35 ±
0.07

0.69 ±
0.07

0.20 ±
0.04

0.60 ±
0.1

EBF: MSE 0.71 ±
0.06

0.14 ±
0.03

0.88 ±
0.06

0.30 ±
0.07

0.81 ±
0.04

0.24 ±
0.4

0.27 ±
0.1

EBF:
MSE+Thresholding†

0.82 ±
0.05

0.21 ±
0.06

0.89 ±
0.06

0.35 ±
0.1

0.80 ±
0.06

0.27 ±
0.06

0.97 ±
0.04

Table 3.2: FAD Scores for GAN generated sounds and Encoder reconstructions

Greatest Hits Water
GAN GAN

Recon.(↓)
Gaver
Recon.(↓)

GAN GAN
Recon.(↓)

Gaver
Recon.(↓)

EBF:
MSE+LPIPS [165]

0.6

1.12 4.40

1.17

1.92 9.45

EBF: MSE 0.72 4.61 1.59 11.77
EBF:
MSE+Thresholding†

2.83 4.16 1.42 7.92

Table 3.3: Comparison with Baseline

Greatest Hits Water
Brightness Rate Impact Type ton Fill-Level

Acc.(↑) Avg.
Chng
Others
(↓)

Acc.(↑) Avg.
Chng
Others
(↓)

Acc.(↑) Avg.
Chng
Others
(↓)

Acc.(↑)

SeFa [154] 0.49 ±
0.11

0.19 ±
0.12

0.45 ±
0.12

0.29 ±
0.14

0.42 ±
0.15

0.31 ±
0.09

0.92 ±
0.09

EBF:
MSE+Thresholding †

0.82 ±
0.05

0.21 ±
0.06

0.89 ±
0.06

0.35 ±
0.10

0.80 ±
0.06

0.27 ±
0.06

0.97 ±
0.04

Greatest Hits dataset and Table 3.6 for the Water dataset. For SeFa, since we do not know

which vector (of the δw=128 dimensions) edits a specific attribute, we report scores for

edits performed by the top 10 vectors with the highest singular values (top 10 for Greatest

Hits and top 3 for Water Filling) for comparison in the table. (↑) indicates higher values

are better and scores highlighted with ”*” indicates no significant differences (p > 0.05).

Each row indicates a semantic attribute manipulation using a specific guidance vector,

and each column evaluates how the scores change for that attribute. The darkened cells

in the table indicate dimensions with the highest score for a semantic attribute (in that

column).



Chapter 3. User-Defined Semantic Attribute Guidance from Unlabeled Data 51

Table 3.4: Pairwise rescoring for Greatest Hits (EBF)

Brightness(↑) Rate(↑) Impact Type(↑)

Brightness 0.82± 0.06 0.06± 0.04 0.40± 0.07

Rate 0.40± 0.09 0.89± 0.06 0.38± 0.09

Impact Type 0.35± 0.07 0.19± 0.03 0.80± 0.05

Table 3.5: Pairwise rescoring for Greatest Hits (SeFa)

Brightness(↑) Rate(↑) Impact Type(↑)

Dimension 0 0.10± 0.07 0.07± 0.06 0.18± 0.13

Dimension 1 0.30± 0.11 0.45± 0.12 0.28± 0.16

Dimension 2 0.31± 0.11 0.09± 0.06 0.42± 0.15∗

Dimension 3 0.49± 0.12 0.09± 0.06 0.30± 0.16

Dimension 4 0.12± 0.08 0.14± 0.08 0.17± 0.12

Dimension 5 0.31± 0.11 0.10± 0.06 0.30± 0.14

Dimension 6 0.32± 0.11 0.14± 0.08 0.19± 0.13

Dimension 7 0.14± 0.08 0.10± 0.06 0.38± 0.16∗

Dimension 8 0.18± 0.09 0.09± 0.07 0.28± 0.16

Dimension 9 0.34± 0.10 0.11± 0.07 0.20± 0.13

For both datasets, our method reports a significant change in the main attribute be-

ing manipulated. Further, we analyze if each dimension or direction vector from both

methods manipulates only a single attribute. For this, we perform a two-way t-test for

the scores between any two SeFa dimensions. We particularly notice that for SeFa, the

semantic attribute of Impact Type is affected by at least two dimension vectors, namely

Dimension 2 and Dimension 7 in Table 3.5. This implies that methods such as SeFa may

not always guarantee one-to-one correspondence between statistically found vectors for

guidance and the semantic attributes of interest. Furthermore, the first dimension asso-

ciated with the largest singular value extracted using SeFa does not correlate with both

datasets’ main perceptually varying attributes. This implies that such automated meth-

ods do not always guarantee to find vectors that control perceptually relevant attributes

in the latent space of a generative model for audio.
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Table 3.6: Pairwise rescoring for Water (EBF and SeFa)

EBF† Fill-Level(↑)

Fill-Level 0.97± 0.04

SeFa Fill-Level(↑)

Dim 0 0.14± 0.11

Dim 1 0.92± 0.09

Dim 2 0.27± 0.16

Table 3.7: Listening Test Results

Water Greatest Hits
Fill Level(↑) Brightness(↑) Rate(↑) Impact Type(↑)

SeFa 0.47± 0.03 0.75± 0.03∗ 0.58± 0.04 0.51± 0.04
EBF† 0.55± 0.03 0.75± 0.04∗ 0.68± 0.04 0.67± 0.05

3.4.5.3 Listening tests

We recruited 20 Amazon’s Mechanical Turk (AMT) participants to evaluate the modified

sounds using both methods. Only participants with more than 95% approval rate on their

previous tasks on AMT across at least 1000 completed tasks were allowed to attempt

our listening test. Before attempting our listening test, participants underwent a hearing

screening designed for crowdsourced platforms based on [172]. The participants were

requested to sit in a quiet place and use a pair of headphones for the test duration.

During the hearing screening, the participants were presented with two audio samples.

Each sample contained tones generated at random frequencies between 55Hz and 10kHz.

They were asked to count the number of tones in each audio sample. Participants who

completed the screening by correctly estimating the number of tones were allowed to

attempt our listening test. The audio samples in the hearing screening ensured that the

participants were of normal hearing, were using a pair of headphones, and were in a quiet

environment when attempting the listening test.

We created the audio samples for our main listening test by randomly sampling from the

StyleGAN and then editing each sample using both methods’ direction vectors. For the

Greatest Hits dataset, we randomly sampled 20 sounds from the StyleGAN2’s latent space

and modified them using vectors derived using our method for Brightness, Impact

Type and Rate . For SeFa, we used the vectors with the highest rescoring accuracy

from Table 3.5 to manipulate the samples. We developed a listening test interface to

evaluate our attribute edits. The participants were presented with the unmodified original

reference sound and the manipulated samples. They were asked to evaluate if the two

samples differed in the 3 attributes. We randomly sampled the latent space for the Water
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dataset 10 times and modified the samples using vectors for Fill-Level . As the Fill-

Level for Water varies continuously, we wanted to evaluate if manipulating the sound

samples sequentially and linearly using both methods preserves the interim Fill-Levels

(such as when the bucket is empty, quarter or half full, etc.). To do this, we use the

rank-ordering interfaces outlined in [173] to measure the perceptual linearity of linearly

manipulating the sample using the guidance vector for Fill-Level . The interfaces for

the listening tests can be viewed on our supplementary webpage.

We use accuracy scores to evaluate our listening tests, with ‘accuracy’ formulated as the

fraction of the listening test trials where participants correctly selected the attribute being

manipulated for a sample in comparison to a reference. Table 3.7 shows the scores from

our listening tests for both datasets and their respective attributes. (↑) indicates that

higher values are better and scores highlighted with “*” indicates no significant differences

(p > 0.05). For Water, participants could perceptually rank-order the water-filling sounds

in increasing order of Fill-Level significantly better when using our method. For the

Greatest Hits dataset, participants found our method to perform significantly better

while manipulating the sounds for Rate and Impact Type . However, for the attribute of

Brightness, participants found both methods to perform equally well. By qualitatively

listening and comparing the brightness samples generated by the algorithm, we find that

samples generated using our method cover a wider range of brightness than SeFa (visit

the supplementary webpage for examples).

3.5 Application: Selective Semantic Attribute

Transfer

In this section, we demonstrate the simplicity of extending our framework to applications

other than performing semantic edits of textures. The prototypes and guidance vectors

derived from our method can be used to support applications such as selective semantic

attribute transfer. This task is inspired by image editing applications such as Photoshop,

where a user can select an object and transfer its color to another object. We envision a

selective attribute transfer tool where the prototype and guidance vectors guide selecting

an attribute from a reference sample and transferring it to another sample.

Figure 3.4 shows a diagram outlining the approach. Say we have a reference sample

embedding wref and a target sample embedding w, and we want to selectively transfer

the attribute of Brightness from the reference wref to w. To do this, we first project

both wref and w onto the attribute guidance vector d between wp1 and wp2. We then
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Figure 3.4: Semantic attribute transfer from a reference sample wref to a
target w, with direction vector wp1 → wp2 representing, say an increasing level
of “Brightness”. Both wref and w are projected onto to the direction vector d.
The difference vector d′ is used to selectively edit w to generate w′. w′ will have
the same brightness relationship to w as wref .

edit w in the direction of the difference between the projections, namely d′, to create

w′. This method not only transfers the Brightness attribute from wref to w′ but also

preserves the other unmodified semantic attributes of w as well as its original structure

(position or location of the impact events along the time axis). A formal outline of this

algorithm and some results from selectively transferring individual attributes such as

Brightness onto a target sample can be found on our webpage.

3.6 Discussion

The main takeaway from this research is that controllability through labeled training

data need not be built-in into the generative model’s training and development proce-

dures. Such guidance or controllability (or steering in terms of human-centered tools for

creativity) can be induced through post-hoc methods, such as in EBF, or using other

post-training algorithms [78, 153, 155]. Enabling steering or guidance in this way can en-

able the users of such tools to define semantics important to their creative work and not

rely on the model developer’s definition or understanding of their needs. Using frame-

works such as EBF, users can “probe” pre-trained generative models to understand the

breadth of the system’s capabilities.

Constraining traversal to the latent manifold for α > 1: In section 3.4.5.1, we

qualitatively study the effect of performing edits using α > 1, where α is the interpolation



Chapter 3. User-Defined Semantic Attribute Guidance from Unlabeled Data 55

step size. As seen in equation 3.3, our method assists in a linear traversal of the latent

space using the computed direction vector to perform semantic edits on any randomly

generated samples. For higher values of α, this linear way of traversing the latent space

may result in w vectors falling outside the latent manifold. Such edited vectors may

result in the generation of noisy or unintelligible samples. Other traversal methods may

accommodate the local geometry of the latent space so local edits do not escape the latent

manifold. One approach is to use more than two prototypes, supported by “in-between”

examples, to improve the robustness of our framework. Another approach is investigating

incremental non-linear traversal methods (such as in [174]). With such traversal methods,

the guidance can be directed to stay within the manifold by incrementally guiding the

generation using a sequence of consecutive directional d vectors. However, it should

be noted that such methods will increase the number of computations to be performed

during edits or the number of synthetic samples that will need to be manually created.

Manual curation of samples: Although our EBF method has been more effective

than algorithms such as SeFa [154] at modifying the user-defined semantic attributes

on a texture, some manual curation of synthetic samples is needed to find the relevant

guidance vectors. On the other hand, algorithms such as SeFa are automatic and can

be applied to any pre-trained GAN without any manual intervention. Thus, exploring

the potential of combining SeFa’s ability to automatically discover vectors for attribute

manipulation with the EBF method to improve the accuracy of editing the semantic

attributes will form a productive avenue for research.

Querying GANs using out-of-distribution sounds: The Encoder outlined in sec-

tion 3.3.2 is trained on masked and amplitude thresholded versions of the real-world

training data. In our ablation studies experiments in Section 3.4.5.1, we showed that

the Encoder using amplitude thresholding out-performed others, especially for noisy

water-filling sounds. This training approach assists in projecting any out-of-training-

distribution sounds, such as the parametrically synthesized sounds in our case, to a

reasonable part of the latent space, even though the Encoder is not directly trained on

such synthetic sounds. Such an Encoder can be extended to query the StyleGAN’s la-

tent space using other out-of-distribution sounds, such as the sound generated vocally

by users (i.e., query-by-humming approaches). A productive avenue for future work will

be to further study the applicability or limitations of our framework in conjunction with

vocal queries to guide audio texture generation perceptually.
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3.7 Summary

In this chapter, we proposed an audio example-based method to perceptually guide the

generation of audio textures based on user-defined semantic attributes. Using a synthe-

sizer to create a few examples, we developed attribute guidance vectors in the latent space

of a StyleGAN2 to controllably generate both impact sounds and continuously varying

water-filling audio textures. We showed the effectiveness of our method in providing

linearly varying controls for texture generation using objective metrics and perceptual

listening tests. Furthermore, we applied our method to other signal-processing tasks,

namely semantic attribute transfer.



Chapter 4

Audio Morphing with

Text-to-Audio Models

Chapter Synopsis

In this chapter1, we address RQ2. Sound morphing combines two sounds to generate

novel and perceptually hybrid sounds simultaneously resembling both [2, 31]. In this

chapter, we provide means to semantically edit and morph the sound generated by the

generative algorithms to allow sound designers to explore the AI model’s conceptual

representational space better and in a fine-grained way. Using a pre-trained text-to-

audio model, we introduce a novel algorithm to granularly morph the semantics of sounds

generated by disparate text prompts. We leverage a pre-trained latent diffusion model

discussed in Chapter 2 and use the cross-attention layers to generate sound morphs.

Using this method, we can smoothly control the semantics in the generated morph using

simple fader-like controls. We evaluate our method objectively using text-audio similarity

metrics and subjectively using perceptual listening evaluations.

1Based on the article pre-print:
Kamath, P., Gupta, C., Nanayakkara, S. (2024). MorphFader: Enabling Fine-grained Semantic
Control for Text-to-Audio Morphing through Fader-like Interactions. (Currently Under Review)
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4.1 Introduction

Diffusion-based [130] text-to-audio (TTA) models have recently exhibited remarkable

capabilities in generating sound effects using guidance from text prompts [131–133]. The

semantic sound space generated by TTA models is a productive avenue for novel sound

exploration and, thus, for developing creative support tools (CSTs) [17] for sound design.

However, their capabilities for gradually or smoothly morphing two sounds are relatively

unexplored.

In this research, we introduce MorphFader, an interactive technique that utilizes TTA

models to morph sounds generated by two different text prompts. Previous work in the

image domain has demonstrated the efficacy of using cross-attention layers [113] to per-

form semantic edits to individual images [175–177]. We expand on these methods and

develop a technique for interactive sound morphing and editing by granularly manipu-

lating the cross-attention components using fader-like controls. We technically evaluate

our method using text-audio similarity metrics and perform preliminary user evaluation

by conducting perceptual listening tests.

In summary, our contributions include -

• A novel interactive technique to smoothly morph sounds generated by two disparate

text prompts using pre-trained TTA diffusion models.

• A technique to interactively and semantically emphasize or “weight” certain word

descriptors while morphing.

• A web-based interface to demonstrate our method’s effectiveness in generating

morphs using simple fader-like controls.

Our method can operate on any pre-trained TTA models without requiring extra training

procedures or fine-tuning. Our current web-based interface demonstrates the morphing

of two sounds in one dimension. In our future work, we outline interaction designs that

utilize our method to morph sounds using 2D or 3D interfaces. A video demonstration

of our method and the morphs generated can be listened to on our webpage2.

2https://purnimakamath.com/thesis-related/chapter_4/

https://purnimakamath.com/thesis-related/chapter_4/
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4.2 Related Work

4.2.1 Morphing in Audio

In videos, morphing is a common cinematic technique where an image of a person grad-

ually transforms into another person in a series of smooth steps. When applied to audio,

this technique can generate novel intermediate hybrid sounds and timbres, which can

be useful in creating innovative musical compositions and fantastical sounds for sound

design [31, 82]. However, most existing systems for morphing are limited to pitched in-

struments or vocal sounds [13, 31, 178–181] and do not perform well with ambient sound

effects (e.g., dog barks) [115]. Previous works show that deep neural networks with spe-

cially designed labels could assist in generating smooth morphs [115, 116]. However, such

models must be trained or fine-tuned on a small, targeted range of sounds, which limits

their applicability outside those sound types.

Techniques for audio morphing can be broadly categorized into two - (1) dynamic mor-

phing [182], where the source sound gets continuously transformed to the target sound

over some time t, and (2) repetitive morphing [183] (also called as stationary [182], or

cyclostationary [181] or static [183] morphing in the literature), where a series of inter-

mediate sound morphs are generated, with each progressively containing more features

of the target sound and fewer of the source sound.

In our work, we use existing pre-trained diffusion models capable of generating a wide

variety of sound effects and develop a technique to generate morphs without additional

training or fine-tuning. Further, we adopt the repetitive morphing paradigm to morph

sounds generated by two text prompts. This helps us generate novel intermediate hybrid

sounds and timbres that, at times, can generate fantastical sounds at each morph step.

4.2.2 Interacting with Generative Models using Text

Recently, diffusion-based text-to-audio (TTA) models have democratized how we gen-

erate sounds using AI models. Sound designers of all experience levels can use natural

language to leverage AI models in their creative work. In contrast, previously, the sound

generation relied on specialized labels designed by the AI model’s developers [13, 79, 80]

or leveraged the emergent properties of the latent space of the model [78, 184]. Although

such models enable building steerable interfaces for CSTs [15, 16, 48, 81, 82], they do

not scale well to large datasets compared to TTA models.
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For audio, TTA models can be categorized as those that generate music [185–187] and

others that generate sound effects, such as AudioLDM [132] and TANGO [131]. Cur-

rently, using a text prompt is the only way to interact with these TTA models. In the

image domain, for text-to-image (TTI) models, [175–177, 188] outline methods to enhance

creativity support offered by text by providing means to either manipulate prompts dur-

ing the diffusion process or enable additional creative control, such as the use of image

sketches [189]. For audio, models such as DITTO [134] enable control over a pre-trained

diffusion model by optimizing the diffusion process during inference to achieve an ad-

ditional creative goal in conjunction with text. While such methods enable building

interactivity with the underlying model for better control, their potential for the creative

task of morphing two or more sounds has not been explored.

Inspired by these approaches to induce creative control into pre-trained text-based diffu-

sion models, in our work, we enhance interactivity with a pre-trained TTA model beyond

simply using text prompts to generate audio morphs. By controlling the interpolation

between two prompts through diffusion, we generate novel perceptually intermediate

sounds that simultaneously resemble both the source and target-prompted sounds.

4.3 Proposed Method

At the core of our method is a pre-trained text-to-audio (TTA) latent diffusion model

(LDM) [137], such as AudioLDM [132]. In Chapter 2, we briefly discussed diffusion

models. This section provides a deeper background on LDMs and a further understanding

of cross-attention components, which form the basis of our method. Subsequently, we

outline our MorphFader method, which uses these components to morph and semantically

word-weight two or more sounds.

4.3.1 Latent Diffusion Models

Diffusion models [130] belong to the class of generative AI models that learn to denoise

a spectrogram through a series of steps to generate high-quality sounds. While diffu-

sion models generally work directly on the spectrogram representations, LDMs, on the

other hand, work towards denoising the latent vector representations of a pre-trained

Variational Autoencoder (VAE) [190].

In Figure 4.1 (a), we show a drilled-down schematic of a denoising U-Net [135] for one step

of the LDM-based diffusion process. The diffusion process accepts a randomly sampled
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Figure 4.1: Schematic outlining the diffusion process and our method. (a) The
diffusion process accepts a randomly sampled noise vector and a text prompt.
The cross-attention layers in pink are responsible for injecting the text prompt
embeddings into the generative model. (b) shows the schematic for our method.
A user first generates a sound for the source prompt 1○ and target prompt
2○. We intercept the Q, K, V matrices for both prompts. While generating

the morph 3○, we inject the interpolated matrices 4○ to generate the resulting
hybrid sound 5○.

noise vector and a text prompt. Diffusion occurs iteratively in T steps to generate

the denoised latent vector z. This latent vector is decoded to a spectrogram using the

VAEs decoder network. The spectrogram is converted to an audio waveform using a

vocoder [109]. Note that the details on the various aspects of the diffusion process which

we do not modify in our method - such as the pre-trained VAE’s encoder and decoder,

the diffusion forward noising process, the vocoder, as well as the text encoding process -

have not been shown in this figure for brevity.

In each step of the denoising U-Net are a series of attention layers [113] (shown in pink

in Figure 4.1). More specifically, these are cross-attention layers, where each word in

the text prompt “attends to” or affects a specific semantic of the generated sound. For

instance, a text prompt “a dog is barking” differs from the prompt “a dog is barking

with reverb” in that the latter also pays “attention” to the part of the spectrogram that

adds reverb to the generated sound. TTA models use cross-attention layers to inject the

text prompts into the generative process. More formally, the components of an attention

layer are called query Q, key K, and value V. Cross-attention is formalized as -

Cross-Attention(Q,K,V) =

attention map︷ ︸︸ ︷
Softmax

(
QKT

√
d

)
V︸ ︷︷ ︸

cross−attention matrix

(4.1)
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Where matrix Q is the embedded noise vector, and matrices K and V are embedded

vectors of the text prompt (all shown in Figure 4.1 (a)). And d is the dimension of the dot

product. The Softmax output of the dot product between Q and K is referred to as an

attention map. The dot product of the attention map with V is referred to as the cross-

attention matrix. This cross-attention matrix contains the semantic information from

the text prompt and is used to update the spectrogram through the diffusion process. In

our work, we focus on manipulating the components of the attention matrices, namely

Q, K, and V, on generating morphs and semantically scale the emphasis of words in

prompts during morphing.

4.3.2 MorphFader

The intuition behind our method is that the components of the cross-attention matrices

carry information concerning the semantic similarity between the text prompt and the

generated sounds. By “weighting” or scaling these components, we can semantically

emphasize the presence of a descriptor in the generated sound. Similarly, we can generate

perceptually plausible intermediate sound morphs by continuously interpolating between

the cross-attention components of two prompts.

Our method and algorithm are outlined in Figure 4.1 (b) and Algorithm 2. Say we

want to generate a morph between two text prompts - a source prompt such as “A dog

barking” and a target prompt such as “A cat meowing.” We first generate the Q, K, and

V matrices individually through the diffusion process for both these prompts. We then

interpolate these matrices to generate the attention components for the morphed sound.

As shown in Algorithm 2, we can interactively control the level of morph or interpolation

using a scalar value α, where 0 < α < 1. This interpolation operation between the

matrices occurs at each layer of the U-Net. The layer notations in Algorithm 2 are not

indicated for brevity. As α changes from 0 to 1, the morph slowly changes from the

source to the target sound.

Furthermore, through MorphFader, we can semantically increase or decrease the em-

phasis of certain word descriptors in a prompt. For instance, for the prompt “A dog is

barking with reverb,” by simply multiplying the matrix V with a weight vector, we can

semantically increase or decrease the “reverb” in the resulting sound.

V = wts×V (4.2)
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Algorithm 2: Generate Morph

Input:
P(s), P(τ) are source and target source prompts;
Pϕ is unconditional prompt (classifier free guidance);
α is the interpolation level. Where 0 < α < 1;
s is the random seed; DM is the diffusion process;

wts(s), wts(τ) are word weights for each prompt;
zT is initial noise vector;

Output:
z0

(morph): the denoised latent to generate the morph;

Function:
zt ← zT;
for t← T, ..., 1 do

// Intercept relevant matrices.
// Do for every layer. Layer annotations are not included for brevity.

zt−1
(s), Q

(s)
t , K

(s)
t , V

(s)
t ← DM(zt,P(s), t, s);

zt−1
(τ), Q

(τ)
t , K

(τ)
t , V

(τ)
t ← DM(zt,P(τ), t, s);

// Optional: Apply word weights. See equation 4.2.

V
(s)

t ← wts(s) × V
(s)
t ;

V
(τ)

t ← wts(τ) × V
(τ)
t ;

// Interpolate relevant matrices.

Q
(morph)
t ← α × Q

(τ)
t + (1− α) × Q

(s)
t ;

K
(morph)
t ← α × K

(τ)
t + (1− α) × K

(s)
t ;

V
(morph)
t ← α × V

(τ)

t + (1− α) × V
(s)

t ;

// Run diffusion process with interpolated matrices.

zt−1
(morph) ← DM(zt,Pϕ, t, s){Q(morph)

t ,K
(morph)
t ,V

(morph)
t };

zt ← zt−1
(morph)

end

return z0
(morph)

Where V is the value matrix of the source or the target prompt, wts is the weight vector,

and V is the resulting semantically weighted value matrix.

Our approach of weighting V achieves similar goals to that of the semantic editing method

outlined in [175]. In [175], authors propose to weight the full attention map for performing

edits. Instead, we find it more computationally efficient to intercept, interpolate, and

propagate individually weighted V components than the full attention matrix through

each layer and per step of the diffusion process while morphing or word-weighting sounds.
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Figure 4.2: A screenshot of our web-based morphing interfaces. (a) For mor-
phing using text prompts, a sound designer can individually generate a source
sound, such as that of “A dog barking”, and a target sound, such as that of
“A cat meowing” shown in the interface’s left and right columns, respectively.
The generation of the audio morph between the two sounds at the center of the
screen can be controlled by using a fader control that generates novel intermedi-
ate sounds with features resembling both the source and the target sound. (b)
For semantically weighting words: The word in the text prompt that is being
“weighted” or emphasized is highlighted in yellow. The scalar weight for this
word is changed interactively using a fader control.

The interpolated matrices are then injected into the diffusion process during morph gen-

eration to create the final morphed latent vector z0. This vector generates the morphed

sound using the VAE decoding process. Thus, by interpolating between the attention

components of the two prompts, we can generate fantastical animal vocalizations, such

as a morph between a dog’s “bark” (source) and a cat’s “meow” (target).

4.4 Experiments

In this section, we outline the details for implementing our method, the metrics used to

objectively evaluate it, and the experiments conducted for evaluation.

4.4.1 Datasets

We sourced text prompts from a dataset called AudioPairBank [30] to evaluate our

morphing technique. The AudioPairBank dataset contains over 1123 adjective-noun and

verb-noun text-based concept pairs. It associates an adjective or a verb descriptor with

nouns to create concept pairs such as a “barking dog” or a “squeaking chair,” etc.
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The authors of this dataset show that their curated list of semantic adjectives and verb-

based concept pairs has many audio files associated with various online datasets, such

as FreeSound (FS)3. The pre-trained TTA models in this work were trained on datasets

that include sources such as FreeSound. Therefore, using prompts from this dataset will

generate meaningful (i.e., within-distribution) source and target sound effects to evaluate

our semantic word-weighting and morphing task.

4.4.2 Implementation Details

We implement our method over a pre-trained text-to-audio model AudioLDM [132]. Au-

dioLDM is trained on large audio datasets such as AudioSet [152] in conjunction with

text-based audio tags and captions. Specifically, we use the “audioldm 16k crossattn t5”

model, which uses cross attention and is finetuned on FLAN-T5 [191] embeddings. Al-

though we demonstrate the effectiveness of our method using AudioLDM, our algorithm

can easily integrate with any LDM that uses cross-attention (such as TANGO [131] or

Stable Audio [192]).

Our method is developed using Pytorch 2.0 [193]. We run our experiments on an RTX

2080 Ti 11GB GPU. All experiments are set with a constant random seed for the diffusion

process, and the samples were generated by running the diffusion process for 20 steps

(T = 20).

We implemented two web-based interfaces to demonstrate our method’s ability to seman-

tically weight words (Equation 4.2) and generate morphs (Algorithm 2) using Stream-

lit [194]. The controls to change the morph interpolation level α or word weights wts are

actualized as a slider or a fader control on both interfaces. A demo video of our inter-

faces, our codebase, and Google Colaboratory notebooks demonstrating the interactivity

within our interfaces can be found on our webpage 4.

4.4.3 Evaluation Metrics

Morphing is a creative task; therefore, the resulting morphs are typically assessed based

on the subjective aesthetics of the sound. In this regard, Caetano et al. [195] formulate

a few objective measures for evaluation, such as ‘intermediateness’ and ‘smoothness’, to

evaluate morphed sounds. They define ‘intermediateness’ as a measure that evaluates the

3https://freesound.org
4https://purnimakamath.com/thesis-related/chapter_4/

https://purnimakamath.com/thesis-related/chapter_4/
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perceptual plausibility of the generated sounds. They measure if the generated morphs

are intuitive and perceptually ‘in-between’ the source and target. Further, they outline

the ‘smoothness’ of a morph as the ability of the morphing method to gradually and

linearly morph the sound from source to target.

To measure the perceptual plausibility of our morphs, we use objective audio quality met-

rics. Evaluating perceptual plausibility involves determining if the morphed sounds match

the same distribution as the AudioSet [152] data. The underlying assumption is that if

the objective metrics like FAD and FID were low, the morphed sounds would be closer to

the real sound distribution and thus would sound plausible, like they belong to the real

world. We further reinforce this objective metric by subjectively evaluating the sounds

through listening tests measured using mean opinion scores. We articulate the plausibil-

ity of a good morph in a listening test by providing relevant examples of good morphs

from existing literature, as outlined in the sections below. Finally, for smoothness, we

use perceptual linearity metrics derived from text-audio similarity scores. The technical

details of the metrics are as follows:

• Fréchet Audio Distance (FAD): We use the FAD [39] metric, which is the

distance between the distributions of the embeddings of real and synthesized audio

data extracted from a pre-trained VGGish [196] model, to evaluate audio synthesis

quality as it is consistent with human judgments [39, 110, 197]. Lower values are

better.

• Fréchet Distance (FD): This metric is similar to FAD, but uses state-of-the-art

audio classifier PANN [151] for embeddings instead of VGGish. We use this metric

as it was the primary metric used to evaluate AudioLDM [132]. Lower values are

better.

• Inception Score (IS): This metric evaluates the quality and diversity of audio

based on the embeddings from the InceptionV3 network [40]. Higher values are

better.

• Smoothness of Morph : We compute this metric by measuring the linearity of

the change in the text-based similarity scores w.r.t the morph interpolation step

α. We compute this linearity using the Pearson correlation coefficient (ρ). The

text-based similarity score is computed using CLAP (or Contrastive Language-

Audio Pretraining model [198]). The intuition behind this measure is based on the

principle that if α changes by an X amount, the change observed in the resulting

sound should be linearly proportional to X [82]. Higher smoothness values indicate

higher intuitiveness or usability of the control.
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• Mean Opinion Score (MOS): Mean opinion score subjectively evaluated via

listening test to measure plausibility of the morphed sound. Higher values are

better.

4.4.4 Baseline Selection

While selecting baselines for our experiments, we found that existing state-of-the-art

toolkits, such as sound morphing toolbox [179], fail for non-pitched sounds [115]. Further,

other deep learning methods, such as in [110], generate morphs for only a small targeted

range of sounds, such as wind or water. To the best of our knowledge, there is currently

a lack of methods to morph inharmonic general-purpose environmental sounds, such as

those generated using TTA models. Thus, for our baseline comparison, we selected two

handcrafted methods - (1) interpolating or mixing using raw audio waveforms and (2)

morphing using engineered text prompts. For the first method, we continuously mix

or interpolate between the raw audio waveforms of the source and the target sounds to

generate the mix. For the second method, we engineered prompts such as “A morph

between <Sound A> and <Sound B> where the level of <Sound A> is at <X>% and level

of <Sound B> is at <(100-X)>%”.

4.4.5 Experimental Details

We conduct five sets of experiments to evaluate our method. First, we conduct ablation

studies to study the effect of each attention component and their respective combinations

on the generated morphs. Subsequently, we conducted two experiments to evaluate the

quality of morphs and another to evaluate the effect of morphing semantics based on

different word types, such as adjectives or verbs.

4.4.5.1 Ablation Studies

In the first experiment, we conduct ablation studies to understand the effect of each par-

ticipating attention component during the morphing process. That is, we systematically

ablate or study the effect of adding or removing each individual Q, K, V component

during the morphing process in Algorithm 2. We conduct seven sets of evaluations, such

as using ‘Q only’ to generate the morphs, or ‘Q,K’ only, or ‘K,V’ only, or other com-

binations thereof. We report this analysis using FAD, FD, IS, and Smoothness metrics.
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Based on this, we select the best-performing attention component combination for all

subsequent experiments in this chapter.

We randomly sample 100 source prompts from AudioPairBank to generate the sounds for

the ablation studies experiment. For each source prompt sampled, we randomly selected

another prompt as a target prompt (100 target prompts). We generated sounds for the

source prompts and target prompts using AudioLDM. We then interpolated the attention

components granularly using our method, using α in steps of 0.1 between the range [0, 1]

to generate 11 linearly morphed sounds for each source-target prompt pair. During each

of the seven combinatorial ablation experiments, 1100 morphed sounds were generated

for evaluation.

4.4.5.2 Morphing Quality Evaluation

This section outlines an objective evaluation experiment and a perceptual listening ex-

periment to evaluate the morphs generated using our method in comparison with the

two baselines.

(1) Objective Baseline Comparison: The aim of this experiment is to objectively

compare our morphing method with the selected baselines. For this, we generated 1100

linearly interpolated samples using our method following the same procedure outlined in

ablation studies. For generating sounds using waveform mixing baseline, we granularly

interpolated the source and target prompted raw-audio waveforms to generate 1100 mixed

sounds. For morphs generated using engineered text prompts, we crafted 1100 prompts

by modifying the level values based on α in the prompt to generate interpolated morphs

between the source and target.

We compute two sets of FAD and FD metrics for ablation studies and baseline compari-

son. We compute FAD-AudioSet and FD-AudioSet, where we evaluate the metrics for the

intermediate morphs using 5000 randomly sampled audio files from the AudioSet [152]

Evaluation dataset as reference. Additionally, we compute a second set of FAD and

FD metrics for the intermediate morphs by using the source and the target sounds as a

reference.

(2) Perceptual Baseline Comparison: In this experiment, we aim to perform lis-

tening test evaluations to subjectively analyze our method’s effectiveness in generating

morphs compared with the two baselines. We use mean opinion scores (MOS) for our

analysis.
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We created the audio morphs for our listening test by randomly sampling 20 source

and target text prompt pairs from the AudioPairsBank. We generated morphs using our

method and the two baselines for comparison in this test. The participants were presented

with the source and target sounds and the three morphed sounds for evaluation in the

test.

With approval from our university ethics board, we recruited 18 participants (10 male,

8 female) with a mean age of 28.27 years (SD=4.95 years) for our listening evaluation.

Three participants had a background in music composition, and the remaining partici-

pants had no experience designing or creating sounds. No reimbursement was provided

to the participants for this test.

The listening evaluation was administered online via Qualtrics and can be viewed on our

webpage. Participants were emailed a link to the evaluation and could complete the test

on their own. They were asked to complete the test in a single sitting and requested to

use noise-cancellation headphones during the test. They were also asked to undertake

the test in a quiet environment.

In the instructions for the listening test, we first asked participants to hlyellowlisten to

a popular example of a good morph5. To better evaluate the morphs, we provided them

with an instruction: “During the evaluation, ask yourself - ‘how would I imagine a baby

crying to the tune of a piano?’ And score the option closest to it higher than the rest”.

For each listening trial, we asked participants to listen to source and target sounds and

score each of the three presented morphed sound examples for their perceptual plausibility

on a scale from [0− 100].

4.4.5.3 Morphing Evaluation based on Word Types

This section outlines an objective evaluation experiment and a perceptual listening exper-

iment to evaluate the semantic word-weighting and morphs generated using our method

for different word types.

(1) Objective Evaluation: In this experiment, we aim to objectively analyze if different

word types, namely adjectives, and verbs, have an effect on the plausibility or smoothness

of the generated morphs (Algorithm 2). Further, we analyze if such word types have

an effect on the plausibility or smoothness of the semantically weighted or emphasized

sounds (Equation 4.2).

5We chose the sound of a baby crying morphing to piano from https://www.cerlsoundgro

up.org/Kelly/soundmorphing.html

https://www.cerlsoundgroup.org/Kelly/soundmorphing.html
https://www.cerlsoundgroup.org/Kelly/soundmorphing.html
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For analyzing semantic word-weighting sounds, we randomly sampled 100 adjective-based

and 100 verb-based from the AudioPairBank and linearly modified the weights on the

adjective or verb descriptors from [−2, 3] to generate the sounds. This generated 6 linearly

weighted sounds for each prompt to generate 600 semantically word-weighted sounds.

Similarly, we sampled 100 adjective-based and verb-based prompt pairs and interpolated

α to generate the morphed sounds to perform this evaluation. Our analysis for this

experiment uses the smoothness metric, where we compute the text-based similarity

scores for the generated sounds and compute its linearity w.r.t change in interpolation

step (in steps of 1 between [−2, 3] for word-weighting experiments and steps of α = 0.1

for morphing experiments).

(2) Perceptual Evaluation: Finally, we conduct listening test evaluations to percep-

tually analyze the effect of word types on semantic word-weighting and morphing using

our method.

We conducted two sets of listening evaluations: (1) we evaluated if the semantic word

weight changes on adjective/verb descriptors were perceptible, and (2) we evaluated if

the morphs generated with α = 0.5 sounded perceptually “in-between” the source and

target sound.

We randomly sampled 5 adjective-based and 5 verb-based prompts and modified the

word weights as before for the word-weighting evaluation. The participants in the test

were presented with two sounds: a reference sound and a sound under test. The sound

under test was generated by modifying the weights on the adjective or verb descriptor of

the prompt by +1 or −1.

For the morphing listening evaluation, we randomly sampled 4 adjective-based pairs and

4 verb-based prompt pairs and generated the morphs using our method. The participants

were presented with three sounds: a source reference, a target reference, and a morphed

sound under test. The morphed sounds were generated with interpolation level α = 0.5.

We conducted another listening test (separate from baseline perceptual evaluation) and

recruited 17 participants (8 male, 9 female) with a mean age of 28.47 years (SD=5.98

years) for our listening evaluation. Three participants had a background in music com-

position, and the remaining participants had no experience designing or creating sounds.

The listening test was conducted using the Qualtrics survey and can be found on our

webpage. No reimbursement was provided to the participants for this test. Overall, our

listeners evaluated 20 questions on word weighting and 8 questions on morphing. We

also collected some qualitative comments for each question from our listeners.
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Table 4.1: Ablation Studies

FAD (↓) FD (↓) FAD (↓) FD (↓) IS(↑) Smoothness (↑)
AudioSet AudioSet

Q,K,V 10.81 56.68 0.25 5.14 5.98 0.61

K,V 10.82 56.61 0.26 5.14 5.96 0.60

Q,K 17.53 94.71 7.48 50.79 1.80 0.30

Q,V 12.73 81.72 4.87 42.72 2.54 0.41

Q only 17.54 94.71 7.47 50.80 1.80 0.31

K only 27.09 134.35 14.74 96.78 1.00 0.30

V only 12.73 81.72 4.87 42.72 2.54 0.40

For word-weighting, the listeners were asked to evaluate the edited sound with the ques-

tion “How has the semantic property changed in the test sound compared to the ref-

erence?”. This multiple choice question included “More”, “Less”, “No Change,” and

“Cannot say” as options. Similarly, for morphing evaluation, the listeners were asked to

evaluate the morphed sound with the question, “Does the in-between sample sound like

a plausible morph between the source and the target?”. All questions in this test were

multiple choice questions with “Yes”, “No,” and “Cannot say” as options.

4.5 Results

4.5.1 Ablation Studies

We first study the effect of using Q, K, and V matrices individually while morphing

using our method. Table 4.1 shows the FAS-AudioSet, FD-AudioSet, FAD, FID, IS, and

Smoothness scores for each combination of the matrices. (↓) indicates that lower values

are better. We find that using Q,K,V and K,V outperforms other attention component

combinations. We use the best performing Q,K,V for all experiments in the remainder

of the paper.
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Table 4.2: Baseline Comparison

FAD (↓) FD (↓) FAD (↓) FD (↓) IS(↑) Smoo- (↑) MOS (↑)
AudioSet AudioSet thness

Ours 10.81 56.68 0.25 5.14 5.98 0.61 ±0.03
∗ 50.49±1.66

Wav.Mix 9.13 52.19 0.92 12.88 5.34 0.61 ±0.07
∗ 29.50±1.91

Prompting 11.73 67.10 1.53 18.21 5.20 0.34±0.03 45.26±1.90

4.5.2 Morphing Quality Evaluation

4.5.2.1 Objective Baseline Comparison

Table 4.2 shows our method’s results compared with the selected baselines. (↓) indicates

lower scores are better. Our method can generate better-quality sounds in terms of FAD,

FD, and IS compared to the baselines. The mixes generated interpolating raw-audio

waveforms demonstrate better FAD-AudioSet and FD-AudioSet scores than our method.

Interestingly, our method and waveform mixing perform equally well when evaluated on

the smoothness metric. A two-way t-test indicates there were no significant differences

between the two scores (indicated by ‘*’ in the table, (t(N = 199) = 0.254, p = 0.799)).

However, by qualitatively listening and comparing the morphs generated by the two

methods, we find that the sounds generated by our method generate perceptually novel

sounding elements and are not simply an additive mix of the source and the target. We

encourage our readers to listen to the sounds for comparisons on our webpage 6.

4.5.2.2 Perceptual Baseline Comparison

Table 4.2 shows the MOS from our listening test. (↑) indicates higher values are bet-

ter. On average, the participants took 53.9 minutes (Min=14.61 mins, Max=179.7 mins,

Std=49.35 mins) to complete the test. Participants rated morphs generated using our

method as perceptually better as compared to mixes generated using raw-audio wave-

forms (t(17) = 11.52, p < 0.05) as well as engineered prompts (t(17) = 2.70, p < 0.05).

In [195], Caetano et al. articulate the difficulty in conducting a perceptual listening

evaluation for morphs. No definite objective criteria exist while subjectively evaluating

artistic outputs such as morphs. Such evaluations depend upon the participant’s personal

taste and aesthetics, which is difficult to measure and generalize. Therefore, we conduct

perceptual listening evaluations for morphs in this research and augment this evaluation

using objective metrics such as smoothness as shown in table 4.2. We encourage our

6https://purnimakamath.com/thesis-related/chapter 4/
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Table 4.3: Analyzing Semantic Word-Weighting based on Word Types

Smoothness of (↑) Plausibility of (↑)
Word-Weighting Word-Weighting

Adjective-based 0.23± 0.03 0.55± 0.04
prompts

Verb-based 0.56± 0.06 0.68± 0.06
prompts

readers to listen to the sounds on our webpage to gauge the effectiveness of our method

in comparison with the two baselines 7.

4.5.3 Morphing Evaluation based on Word Types

4.5.3.1 Objective Evaluation

Evaluating Semantic Word-Weighting: Table 4.3 shows scores for the smoothness

of word-weighting for both adjectives and verbs. A t-test indicates that there were sig-

nificant differences between the text similarity scores before (unweighted; word-weight =

1) and after (with weights; word-weight = −2 and 3) the word-weighting for both types

of descriptors ((t(399 ) = −8 .23 , p < 0 .05 )). This indicates that our method could per-

form edits to the sounds meaningfully while word-weighting both word types. However,

in comparison with each other, weighting verbs in the text prompts was significantly

smoother (ρ = 0.56) than weighting adjectives (ρ = 0.23). Figure 4.3 visualizes the

smoothness of interpolation at each step between [−2, 3] for verb and adjective descrip-

tors. The dotted line shows the similarity score at word-weight = 1, i.e., unweighted

generation. Shaded regions show standard error of means computed by bootstrapping

over 100 iterations.

This result has some implications when designing controls using adjective- or verb-based

text prompts for audio generation. The authors of AudioPairBank note that listeners

identify verb-based annotations in sounds better than adjectives. This is because verbs

tend to be less subjective and more neutral than adjectives. For example, while anno-

tating training datasets, there is less subjective debate about the presence of a barking

sound (verb) than the size or type of the dog (adjective). This subjectivity may also

be prevalent in the captions and tags of other large audio datasets. Thus, controls in

creative support tools that edit semantics based on verbs would be more effective than

semantics based on adjectives.

7https://purnimakamath.com/thesis-related/chapter_4/baseline_linearity_compar

ison.html

https://purnimakamath.com/thesis-related/chapter_4/baseline_linearity_comparison.html
https://purnimakamath.com/thesis-related/chapter_4/baseline_linearity_comparison.html
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Figure 4.3: Plot showing how Text-Audio Similarity Scores change w.r.t
weights values between [−2,3] while semantic word-weighting adjective and verb
descriptors in text prompts.

Table 4.4: Analyzing Morphing based on Word Types

Smoothness (↑) Plausibility(↑)
of Morphing of Morphing

Adjective-based 0.46± 0.18∗ 0.55± 0.10∗

prompts
Verb-based 0.61± 0.15∗ 0.69± 0.07∗

prompts

Evaluating Audio Morphing: Table 4.4 shows scores for the smoothness of morph-

ing when using prompts with adjectives (ρ = 0.46) and verbs (ρ = 0.61). We conduct

t-tests to validate if the morphs generated using our method interpolate ‘away’ from the

source prompt (indicated by a decrease in text-audio similarity) and ‘closer’ to the tar-

get prompt (indicated by an increase in text-audio similarity). For the source prompt, a

two-sample t-test indicated that there was a significant decrease in the text-audio simi-

larity scores after the morphing steps ((t(99 ) = 4 .33 , p < 0 .05 ) for adjective morphing;

(t(99 ) = 6 .64 , p < 0 .05 ) for verb morphing). Similarly, there was a significant increase

in the similarity scores for the target prompt ((t(99 ) = −3 .77 , p < 0 .05 ) for adjective

morphing; (t(99 ) = −8 .45 , p < 0 .05 ) for verb morphing).

We conducted a t-test to validate whether morphs generated by interpolating prompts

with verbs were ‘smoother’ than those generated by interpolating between prompts with

adjectives. We found no significant differences between the smoothness scores for both
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Figure 4.4: Plot for Text-Audio Similarity Scores per morphing level α while
morphing (a) adjectives and (b) verbs in a sentence from source to target prompt.
In both plots, observe how, as the morphing level increases, the similarity scores
for the source prompt steadily decrease while increasing for the target prompt.
Shaded regions show standard error of means computed by bootstrapping over
100 iterations. The dotted line shows the similarity score when both prompts
are equally represented in the morphed sound.

prompts (p > 0.05). This indicates that our method can morph both adjective- and verb-

based prompts equally well. Figures 4.4 (a) and (b) show the trends in similarity scores

while morphing the prompts from source to target. In this figure, we observe that for both

adjectives and verb morphing, the text-audio similarity score gradually decreases for the

source prompt and gradually increases for the target prompt as α steadily increases from

0 to 1. The dotted lines indicate the scores when the two prompts are equally represented

in the sound. Although there were no significant differences in the smoothness values

for both types of prompts, the plots visually show that for adjectives, the plots flatten

towards α values 0 and 1 more than verbs. This indicates that the range of effective

control, the range between 0 and 1 where the morph effectively occurs, is lower for

adjectives than for verbs.

4.5.3.2 Perceptual Evaluation

The participants in this listening test took an average time of 44 minutes to complete

the evaluation (Min=26 minutes, Max=1 hour, 18 minutes, SD=17 minutes)

Evaluating Semantic Word-Weighting: For word weighting, listeners could correctly

recognize verb-weighted changes with an accuracy of 0.68 ± 0.06 and adjectives with

an accuracy of 0.55 ± 0.04. A two-sampled t-test revealed that there were significant

differences between the accuracies for both descriptors (t(16) = −2.39,p < 0.05). Our
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listeners could better evaluate semantic changes to verb-based descriptors than adjectives.

This finding aligns with our objective technical evaluation in Section 4.5.3.1.

Evaluating Audio Morphing: For morphing, listeners evaluated the morphed sounds

between adjective descriptors with an accuracy of 0.69±0.07 and between verb descriptors

with an accuracy of 0.55± 0.10. A two-sampled t-test revealed no significant differences

between the accuracies for both descriptors (p > 0.05). Our listeners evaluated morphs

created by interpolating between adjectives and verbs equally plausible or “in-between”

the source and target sounds. This finding aligns with our objective technical evaluation

in Section 4.5.3.1.

4.6 Discussion

The MorphFader algorithm introduced in this chapter uses a pre-trained TTA model to

generate plausible-sounding, smooth morphs using two disparate text prompts.

Discussing Results from Ablation Studies: In Section 4.5.1, we performed exper-

iments by ablating the attention components in a combinatorial way and found that

both Q,K,V and K,V were best-performing combinations. As shown in Figure 4.1, the

semantic information from the text prompt is usually represented by K and V in the

diffusion process. Further, Q injects the randomly initialized latent noise vector, which,

although impacting the generated sound’s content, does not control the text-based se-

mantics. Therefore, using K and V, with or without Q, ensures a greater representation

of the semantic attributes of the two text prompts while morphing than the other com-

binations.

Discussing Results from Morph Evaluations: In Section 4.5.2.1, we objectively

evaluated our morphing method with the two baselines of sounds generated using wave-

form mixing and engineered prompts. Although we qualitatively observe that our method

outperforms the waveform mixing baseline, we find that both methods perform equally

well when evaluated using objective smoothness metrics. This smoothness metric out-

lined in Section 4.4.3 is conceptually based on prior work in [115, 167, 195] and is im-

plemented using text-audio similarity scores. When evaluating morphs generated by

waveform mixing, the similarity score could be evaluating the presence of individual au-

dio waveforms in the mix instead of the perceptual quality of the overall morph, resulting

in a significant score. To address this, we supplemented the smoothness score with other

objective metrics like FAD, FD, and IS during the evaluation to illustrate the effective-

ness of our approach compared to simply mixing two waveforms. Therefore, we argue for



Chapter 4. Audio Morphing with Text-to-Audio Models 77

the need to develop new metrics that can be used to evaluate the perceptual smoothness

of morphs, instead of relying on text-based similarity scores as used in this study.

Discussing Results from Semantic Word-Weighting based on Word Types:

In Section 4.5.3.1, we evaluated our method of semantic word-weighting prompts with

adjectives and verbs using metrics such as smoothness and plausibility of the generated

sounds. We found that word-weighting verbs generated smoother interpolations than

weighting adjectives. The authors of the AudioPairBank [30] note that human annota-

tors are usually better at identifying actions or verbs in sounds than adjectives. Such

subjectivity might be prevalent in all human-annotated datasets (including AudioSet).

Therefore, we argue that in most current TTA models, fine-grained editing of verb-based

semantics in a sound will be more effective than editing adjectives (as discussed in both

Section 4.5.3.1 and Section 4.5.3.2). Therefore, when designing text-based controls for

sound design, it is important to consider that verb-based controls may be more usable

and identifiable than adjective-based controls.

Discussing Results from Morphing based on Word Types: In Section 4.5.3.1,

we compared our method for morphing prompts with adjectives with that for verbs.

We found that using our method, we could generate smooth and perceptually plausible

morphs for both word types. However, in Figure 4.4, we visually observe that for adjec-

tives, the plots flatten or saturate towards extremely lower and higher values of α more

than that for verbs. This indicates that verbs have a greater range between 0 and 1 where

effective morphs occur as compared to adjectives. This wider range of effective control

for action-describing verbs could be because of human annotator subjectivity prevalent in

audio dataset annotations as observed by [30]. Therefore, when using text-based controls

for morphing, there will be a greater range of opportunities to explore the design space

between verb-based prompts for novel sound discovery than adjective-based prompts.

Opportunities for morphing in modalities other than audio: This chapter dis-

cussed how we can generate morphs by exploring the sound space between two text

prompts. While this idea was designed specifically for audio, it can be easily extended to

designing CSTs for other modalities, such as text. For instance, we interpolate between

the cross-attention components generated by the two text prompts for morphing sounds.

This method can perhaps be applied to morph the style of the text content generated

by a language model. By first generating an attention component for a particular style,

say Shakespeare’s way of writing poems, we can morph or interpolate any generated text

“towards” or “away from” Shakespeare’s writing style. Similarly, we could follow this

method to modify attention components to emphasize or remove emphasis from (as we
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perform semantic word-weighting) a particular affect, emotion, or feeling in the content

during generation.

4.7 Summary

This chapter introduced MorphFader, an interactive technique for morphing sounds gen-

erated by pre-trained text-to-audio (TTA) models. Our method uses fader-like controls

to intercept and interpolate the components of the cross-attention layers within the dif-

fusion process. With no additional training or fine-tuning, our method generates smooth

sound edits and perceptually plausible morphs between sounds generated by different text

prompts. We validated our approach objectively using text-audio similarity metrics and

subjectively through listening evaluations. Through this work, we provided novel inter-

active ways to explore the semantic sound space generated by TTA models for designing

sounds.



Chapter 5

Perceptually Evaluating

Descriptive Qualities

of Sounds Using Visual

Metaphors

Chapter Synopsis

In this chapter1, we address RQ3. Novel AI-generated audio samples are evaluated

for descriptive qualities such as the smoothness of a morph using crowdsourced human

listening tests. However, the methods to design interfaces for such subjective listening

experiments and to effectively articulate the descriptive audio quality under test receive

very little attention in the evaluation metrics literature. In this chapter, we introduce

novel visual constructs to design interfaces to evaluate the descriptive qualities of sounds

generated using deep neural networks. Furthermore, we highlight the importance of

framing and contextualizing a descriptive audio quality under measurement using such

metaphors. Using both pitched sounds and textures, we conduct two sets of experiments

to investigate how the quality of responses varies with audio and task complexities.

1With minor modifications from:
Kamath, P., Li, Z., Gupta, C., Jaidka, K., Nanayakkara, S., & Wyse, L. (2023). Evaluating
Descriptive Quality of AI-Generated Audio Using Image-Schemas. In Proceedings of the 28th
International Conference on Intelligent User Interfaces. IUI ’23: 28th International Conference
on Intelligent User Interfaces. ACM. doi:10.1145/3581641.3584083
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Our results show that, in both cases, we can improve the quality and consensus of

AI-generated audio evaluations by using visual constructs. Our findings reinforce the

importance of interface design for listening tests and stationary visual constructs to

communicate temporal qualities of AI-generated audio samples, especially to non-expert

listeners on crowdsourced platforms.

5.1 Introduction

Generative algorithms aim to generate novel audio that matches naturally occurring

sounds in their descriptive qualities such as realism, naturalness, or plausibility of the

sound [13, 32–36]. Recent studies have emphasized the need for better perceptual evalua-

tion techniques for audio [199, 200]. Automated objective metrics validate audio quality

by measuring concepts that can be statistically represented, such as lack of distortion

or noise [37–44]. Such metrics are faster to evaluate, but fail to find meaningful differ-

ences between descriptive perceptual measures such as realism or goodness of a morph.

Consequently, such perceptual qualities are evaluated using subjective listening tests.

Listening tests aim to measure the perceptual quality of audio samples with respect to

a ground truth or each other. In-person listening tests require a considerable amount of

the researcher’s time and effort and are expensive to set up. Thus, there is an increasing

push within the audio deep learning community to move towards crowdsourced platforms

such as Amazon Mechanical Turk (AMT) to conduct these tests. Platforms such as

AMT are fast-paced, task-based marketplaces where participants optimize their time on

a task. Thus, concise communication of the task instructions and the audio quality under

evaluation becomes increasingly important. AI-generated audio is typically evaluated

on quality concepts for sound progression, such as the quality of a morph (or how two

sounds are interpolated with each other). While such concepts easily translate back to the

ability of the algorithm to disentangle or interpolate within its latent space smoothly, non-

experts on crowdsourced platforms may find such technical jargon difficult to understand.

Furthermore, for sounds that are not easily recognizable, such as multi-event, noisy audio

textures [36, 92, 201], an ideal audio quality description should explicate the complexity

observed in the sound space in a human-understandable way. Outlining such complex

qualities verbosely using language makes for lengthy task instructions, which reduces

participant interest in such tasks [83] and affects the overall quality of responses. In

contrast, for example, image annotation or evaluation tasks often require only a simple

’glance-and-click’ action [29]. Our aim in this paper is to assist novice listeners in under-

standing descriptive audio qualities under evaluation by using visual constructs instead
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of language or words and, in turn, help AI researchers collate better and more meaningful

responses from such listening tests.

The design of a typical listening test interface involves listening to two or more sounds

in comparison to each other or with respect to a reference. As the number of sounds

increases (for instance, a MUSHRA test [84] sometimes involves listening and compar-

ing up to 12 sounds with each other), the demands on the listener’s audio memory also

increase, thus increasing the task’s complexity. Recent human computation research

on crowdsourcing shows that as task complexity increases, the quality of responses de-

creases, and participants more frequently abandon such tasks or submit poor quality

responses [83, 85]. Thus, another aim of this paper is to design intuitive interfaces using

visual constructs to minimize audio task complexity.

Using the metaphors of image-schemas is a promising avenue to visually explicate the

descriptive quality of audio and design intuitive interfaces for listening tests. Image-

schemas [202] are recurring structures and patterns of our basic sensory-motor experience

grounded in our embodied interaction (e.g., walking) with our environment. Our inherent

sensory-motor capacities of perceiving space and orientation are employed to understand

abstract concepts and perform abstract reasoning. For example, when musicians talk

about a composition ”..it moves from G to A minor to C..” they apply their sensory-motor

understanding of forward-oriented movement to understand chord progressions. Our aim

in this research is to apply such image-schemas to evaluating audio in crowdsourced

settings.

We can thus formulate our research questions as follows:

RQ3.1 How effective are visual constructs such as image-schemas in communicating the

descriptive qualities of AI-generated audio?

RQ3.2 How effective are task interfaces designed using visual constructs such as image-

schemas in evaluating AI-generated audio?

We explore these questions by conducting two experiments with 220 participants across

different conditions. In the first experiment, we compare the performance of image-

schemas and language-based descriptions to articulate the descriptive audio quality of

the goodness or smoothness of a morph. In the second experiment, we compare the

performance of interfaces designed using image-schemas and language for the complex

task of evaluating the perceptual linearity of control parameters. In both experiments,

we investigate the effectiveness of each condition by measuring the quality of responses

and consensus amongst participants. Through this paper, we aim to provide future
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researchers working at the intersection of HCI and audio AI with novel intuitive repre-

sentations of audio quality, with an application for obtaining crowdsourced evaluation of

audio samples. In summary, the main contributions are:

• An application of visual constructs, image-schema, to perceptually evaluate AI-

generated audio.

• An open-sourced configurable front-end framework (‘Crowd-Eval-Audio’) to set up

different listening test workflows on AMT.

• Validation of the effectiveness of using image-schemas to conduct listening tests on

a crowdsourcing platform.

We show that directional image-schemas assist in evaluating sound progression in AI-

generated general audio better than language alternatives.

5.2 Related Work

5.2.1 Visual metaphors for audio

Image-schemas were first introduced by Lakoff and Johnson [203] and later elaborated

in [202] as constructs to understand abstract concepts and perform abstract reasoning.

Wilkie et al. [204] use the container and source-path-goal image-schemas (amongst oth-

ers) while designing music synthesizing interfaces. This was done to improve the user

experience and interactions for experienced musicians and novice producers by building

intuitive interfaces and reducing the need to possess specialist signal processing domain

knowledge. Inspired by this approach, this paper will use the source-path-goal image-

schema to articulate and communicate the descriptive audio quality under test and design

our listening test interfaces. Our approach employs our inherent understanding of motion

to indicate how an AI-generated audio sample progressively interpolates, transitions, or

morphs from the start to its end.

5.2.2 Task design and clarity of instructions

Researchers have rigorously studied the effect of the quality of task instructions on worker

performance and the quality of responses in the context of image annotation and natural
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language processing (NLP) tasks on crowdsourced platforms. Gadiraju et al. [85] quantify

task clarity based on the measures of goal clarity (what is needed to be done in a task)

and role clarity (outlining steps to complete it). They survey crowd workers for ratings

on multiple tasks and find that while the intrinsic complexity of a task can be high, the

cognitive load associated with it can be reduced by a well-structured task presentation.

Additionally, workers reported long sentences and complex words as hindrances to task

clarity and performance. Other researchers extend this idea by identifying clarity flaws

in descriptions and building algorithms based on natural language processing to identify

such flaws [205].

Similarly, Wu et al. [83] systematically investigate the relationship between descriptive

metrics (related to the task instructions and descriptions) and prospective metrics (re-

lated to workers’ task preferences, including worker confidence and enjoyment of the

task). They find that though lengthy and descriptive instructions increase worker trust

and accuracy in the responses collected, the uptake and, subsequently, worker interest

in such instruction-heavy tasks may be low. A balance between task design, instruc-

tions, and the number of examples is needed to achieve better descriptive and prospec-

tive metrics. K. Chaithanya Manam et al. [86] formulate a multistage framework for

crowdsourced task description refinement, where workers assist in creating high-quality

instructions based on prior feedback and cross-worker collaboration. Huang and Wu et

al. [87] emphasize the need to decompose complex tasks into sub-components split across

the same or multiple participants, thus narrowing each participant’s focus singularly to

a sub-task to collect more meaningful responses.

While improving the clarity of task instructions should be the central aim of any crowd-

sourced quality evaluation research, our work looks further into interface design to sim-

plify the task complexity and use different visual representations to better articulate the

audio quality under test. Furthermore, most current research on task design and clarity

of instructions focuses on annotation tasks or tasks related to natural language texts.

This paper highlights the importance of a clear task design for descriptive audio quality

evaluation. While there is extensive research that focuses on interface design and repre-

sentation for audio annotation tasks [29, 206, 207], to the best of our knowledge, there is

very little research that discusses the effect of using various intuitive task interfaces and

audio representations for the evaluation of descriptive audio qualities.
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5.2.3 Sound perception studies

In the audio domain, evaluating sounds using crowdsourced platforms is not new. To do

this, researchers have extended ITU standards such as MUSHRA [84] to the web. Web-

MUSHRA [208] brings the lab-based interface to the web utilizing the standard web audio

features available currently on all modern browsers. Cartwright et al. [172, 209] show

that web-based MUSHRA can be easily used to conduct listening tests on platforms

such as AMT to detect intermediate impairments with results matching a lab-based

test. Similarly, research on music similarity judgments [210–213] shows that pairwise

comparisons for musical pieces on AMT lead to good results which are comparable to a

lab-based setup even when participants in the test had no prior musical knowledge. While

these studies provide a basis for meaningfully conducting listening tests on crowdsourced

platforms, they usually analyze pitched sounds or music and do not delve into complex

sounds such as audio textures. Furthermore, most studies look at either audio annotation

tasks [214, 215], pairwise comparisons, or comparisons against a ground truth. In this

paper, we look further into analyzing complex tasks to rank order audio samples with

respect to references and each other. Additionally, while these studies outline methods

to compare audio samples, they do not focus on meaningfully and concisely articulating

task instructions or the descriptive quality under test.

Other studies on music tracking tasks showed that visualizing a parameter such as pitch in

a live music performance enabled better tracking, especially amongst non-musicians [216].

Our research attempts to build upon this work to produce better responses from näıve

listeners by visualizing the audio quality under test on AMT. Regarding tooling, multiple

web-based software tools exist that can be used to conduct listening tests online. Some

use ITU standards [208, 217] or behavioral experimental design [218], but none focus

on visual constructs for audio. The audio-tokens toolkit [219] shares some features with

the interfaces we build. While the authors of the toolkit have demonstrated its use

in behavioral sciences using speech, its use in evaluating perceptual differences for AI-

generated general audio needs further investigation.

5.3 Method

Our aim with this paper is to use visual constructs of image-schemas to explicate the

overall temporal quality of audio in a stationary way (RQ3.1) and reduce task complexi-

ties arising in multi-sample comparisons by designing interfaces based on such constructs

(RQ3.2). We further use recognizable pitched sounds and unrecognizable multi-event
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Figure 5.1: Some image-schemas visualizations which can be used to under-
stand music based on [204, 220, 221] (a) Container, (b) Path, (c) Linkage, (d)
Verticality or Up-Down, (e) Cyclic, and (f) Balance. (g) & (h) show two versions
of the source-path-goal image-schema used in this paper.

noisy textures in both our experiments to investigate the ability of such constructs to

reduce any complexities observed in the generated sound space.

5.3.1 Image-schemas

Researchers in the audio domain, particularly in music, have long studied and developed

theories of musical meaning based on the metaphors of image-schema [204, 221]. Figure

5.1 shows some visualizations of common image-schemas used to understand musical

concepts. The image-schema of containment can be used to understand chords and

keys as containers, which can be connected to other chords/keys using different paths or

linkages. Further, we generally perceive notes to go up or down in pitch. We can also

perceive them to sound identical and yet be an octave apart, thus mapping the melodic

notes space onto a cycle schema. Similarly, the image-schemas for source-path-goal can

be used to understand a step-by-step melodic progression.

In this paper, we use the source-path-goal image-schema to articulate the descriptive

audio quality under evaluation and to design listening test interfaces. Generating novel

sound morphs is an important task in generative audio modeling [13, 222]. Morphs are

generated by interpolating between two points in a generative algorithm’s latent space

or parameter space. Such morph progressions are evaluated for descriptive qualities such

as perceptual linearity or interpolation smoothness. Thus, the source-path-goal is the

most applicable metaphor in our context to indicate a morph progression starting at a
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selected point in the latent or parameter space (source), progressing step-by-step (path)

towards its end (goal).

5.3.2 Crowd-Eval-Audio framework

We conduct listening test experiments to explore RQ3.1 and RQ3.2 on Amazon Mechan-

ical Turk (AMT). Current affordances on crowdsourced platforms such as AMT can be

limiting for researchers conducting listening tests as:

• Experiments on AMT are usually set up and administered to participants via a

simple web page. Such simple pages make hosting a step-by-step workflow required

in an online listening test difficult. Workflows are important to guide participants

through multiple steps in a listening test, such as the task overview, outlining the

consent details, a hearing screening, or post-task surveys.

• The current task administration on AMT does not afford an experimental design

where all participants undergo a fixed set of listening trials or a pre-determined

number of randomized trials.

• The range of design elements and task widgets available on the platform is limiting.

This can lead to unintuitive and poorly designed interfaces for experiments.

We thus build a front-end-based framework2 for setting up configurable online listening

test workflows on AMT. Our framework needs minimal infrastructure (no database in-

stallation required, etc.) and can be easily extended to conduct any experiment on AMT.

We developed the framework as a single-page application (SPA) using VueJs, Javascript,

HTML5, CSS gradients, and Web Audio API. It can be hosted on any content delivery

networks (CDNs) and can be administered on AMT using the External Question API3.

For the experiments in this paper, all resources were hosted on Amazon Web Services

(AWS) CloudFront distribution network to enable fast downloads of audio files and other

resources for crowdsourced participants worldwide. Furthermore, we integrate a partici-

pant logging service implemented using AWS Lambda and an Aurora serverless database.

This logging was implemented to collate unique responses across all experiments by al-

lowing individuals to attempt tasks from only one experimental condition.

2Code and sample experiments can be found at - https://github.com/pkamath2/crowd-eval-
audio.

3https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/

https://github.com/pkamath2/crowd-eval-audio
https://github.com/pkamath2/crowd-eval-audio
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMturkAPI/
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5.4 Experiment 1

In this section, we address RQ3.1 by assessing the effectiveness of using image-schemas

to communicate the descriptive audio quality of the ‘smoothness or goodness of a morph’

of a Generative Adversarial Network’s (GAN) [138] latent space in a listening test.

A GAN’s latent space is smooth if the sound morphs generated by linearly interpolating

between two randomly chosen points in the latent space are perceptually linear. The

morphs are said to be non-linear or uneven if the interpolated sounds jump towards

their chosen endpoints quickly instead of progressing gradually or if the morphs are of

a third class of sounds not within the two chosen endpoints in space. Wyse et al. [116]

showed that transforming this latent space using Self Organizing Maps (SOM) produces

a more even and smoother morph. In this experiment, we conduct listening tests and ask

participants to evaluate the smoothness of morph with and without the SOM ordering

using either image-schemas or descriptive language.

5.4.1 Study Design

We follow a 2× 2 between-subjects factorial design with the following factors -

• Visualization: Using language or image-schemas to articulate the audio quality

under test.

• Type of sounds: Pitched sounds or noisy textures.

We recruited N = 30 participants for each of the 4 experimental conditions on AMT. Un-

der a condition, each participant attempted 3 different trials for pairwise two-alternative

forced choice (2AFC) comparisons with randomly selected sounds synthesized from dif-

ferent GANs. A preliminary test (with N = 3) was conducted on AMT to analyze and

adjust the time allotted and payment for each condition.

5.4.2 Listening Test Interface

We developed a listening test interface for these experiments consisting of a simple 2AFC

type of question. Two image-schemas based on the concept of source-path-goal were

developed to visualize the descriptive quality of smoothness or goodness of a morph. An

image-schema icon for “Direct & Even” conveys the idea of smooth and even morph.
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(a) Screenshot of the smoothness of a sound morph exper-
iment using image-schema

(b) Screenshot of the smoothness of a sound morph exper-
iment using language

Figure 5.2: Experiment 1 listening test user interfaces.

A different icon for “Detour or Uneven” indicates that the morph is uneven or detours

into a third type of sound. Each image-schema icon was associated with its respective

text description (“Direct & Even” or “Detour or Uneven”). Listeners were requested to

listen to the two sounds under comparison and drag/drop an image-schema icon near

the requisite audio sample. When a participant dragged/dropped one icon toward one

audio sample, the interface programmatically moved the other icon toward the other

sample under test. This gave the listener visual feedback on how their choice affected the

other sound under test in the 2AFC experiment. For the language set of experiments, we

outline the descriptive qualities in text without the icons. The language-based interface

was designed and implemented to ensure the same functionality as the interface with

image-schemas. A schematic of the interface and icons used for both the image-schemas

and language conditions are shown in Figure 5.2. The interfaces developed for this

experiment, along with their audio samples, can be listened to on our website4.

4https://purnimakamath.com/thesis-related/chapter 5/

https://purnimakamath.com/thesis-related/chapter_5/
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5.4.3 Sound synthesis

To generate morphed sounds for the 2AFC comparisons, we train two GANs - one on

pitched sounds from the NSynth dataset [79] and another using a noisy texture dataset

[223]. The GANs were trained as outlined in [116]. We selected brass and reed instru-

ments from MIDI pitch numbers 64− 76 from the NSynth dataset to train the GAN for

pitched sounds. For textures, we selected 4 different classes of sounds from the texture

dataset. To generate the morphs, we randomly selected two points, A and B, in the latent

space and sampled 20 evenly-spaced points between them to generate the first clip. Next,

the space between the two selected endpoints was remapped using the SOM (as in [116])

and resampled to generate the second clip. Each interpolated point in the latent space

generates a stationary morph sample between A and B. Finally, all 20 generated samples

are concatenated to create a single audio file presented to a listener for evaluation. Each

audio sample created in this way is approximately 14 seconds in duration. We generated

3 sets of samples, with and without remapping, for the audio trials in this experiment.

5.4.4 Participants

The 120 participants recruited for this experiment were paid $1.40 for completing the

test. Participants were allowed to attempt our experiments if they had a 95% approval

rate with over 1000 approved HITs. The mean task completion times were 7.27 (SD =

3.26) and 7.22 (SD = 3.17) minutes for image-schema and language-based conditions,

respectively. Each participant was allowed to complete a task only from one experimental

condition.

5.4.5 Procedure

Participants were requested to sit in a quiet place and use a pair of headphones during

the experiment. They were first presented with a hearing screening as outlined in [172].

During the screening, participants were presented with two audio samples containing

different tones generated at random frequencies between 55Hz and 10kHz and were asked

to count the number of tones. Participants who completed the hearing screening and

correctly estimated the number of tones were allowed to attempt the task. The hearing

screening ensured that the participants were of normal hearing, were using a pair of

headphones, and were in a quiet environment while taking the test.
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Next, the participants were presented with the instructions for each condition and asked

for consent. Subsequently, a listening test was presented to the participants depend-

ing on their assigned condition. All audio trials within each task were randomized to

reduce any ordering effects. After completing the test, they were asked to complete a

post-test survey, which included questions on their listening equipment and surrounding

environment. They were also asked for comments on the complexity of the listening test.

5.4.6 Measures for evaluation

The measures outlined below build upon the analysis methodologies from [29, 201].

• F-Score: We use F-Scores as a quality measure for our experiments. F-Score is a

harmonic mean of precision and recall used as a binary classification measure for

this experiment.

• Pairwise agreement: We use participant agreement as another measure of the

quality of responses in our experiments. We build upon the pairwise agreement

outlined in [29] to measure the consensus amongst our listeners. This measure can

be formalized as:

agreement =
1

N(N − 1)

N∑
i,j=1

Fi,j , (5.1)

Where N is the total number of participants within a condition and Fi,j is the

pairwise combined F-score between two participants i, j within that condition.

• Test-retest reliability: To estimate the minimum number of participants needed

to obtain stable results for our experiments, we measure the test-retest reliability of

our results. We randomly divided our participants into two groups and measured

Pearson’s correlation coefficient between vectors of quality versus condition for

each group. Then, we repeated the procedure 1000 times for a range of sample

sizes (from 2 to 30) and analyzed the reliability coefficient.

All score distributions, confidence intervals (CI), and standard errors of means are visu-

alized and reported by bootstrap (1000 samples). For every bootstrap iteration, a set of

participants equal in number to the participants who took longer than the average time

to complete each trial were sampled with replacement.
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Figure 5.3: Results of Experiment 1 for pitched and texture sounds based on
the type of visualization.

5.4.7 Results

The responses we collected via our experiments on AMT did not conform to the conditions

of normality. We thus conduct non-parametric tests to analyze the results. We first

test the stability of our responses using test-retest reliability measures. Our test-retest

reliability coefficient for the pitched sounds condition increased from 0.39 at N = 2 to

0.95 at N = 18. For textures, the reliability coefficient increased from 0.24 at N = 2 to

0.95 at N = 24. Thus, N = 30 is sufficient for analyzing all conditions in this experiment.

Effect of visualization on quality of responses

For this experiment, Figure 5.3 (a) plots F-Score as a measure of quality for the ex-

periment conducted using image-schema (Mdn = 0.781) and language (Mdn = 0.462)

for both pitched and texture sounds. Figures 5.3 (b) and (c) plots F-Scores individu-

ally for pitched sounds (Mdn = 0.860 and Mdn = 0.538 for image-schemas and lan-

guage conditions) and textures (Mdn = 0.727 and Mdn = 0.416 for image-schemas and

language conditions) respectively. A Sheirer-Ray-Hare test for the quality of response

comparison across visualization and sound types showed that visualizations had a sig-

nificant effect on the overall quality of responses (H(1, 118) = 20.62, p < 0.017, adjusted

for Bonferroni correction α = 0.05/3 = 0.017). A post-hoc Mann-Whitney test found

that image-schemas had a significant effect on the quality of responses for both pitched

sounds (U(N1 = 30, N2 = 30) = 674.5.0, p < 0.05) and textures (U(N1 = 30, N2 =

30) = 637.5.0, p < 0.05). Therefore, for experiments with simple 2AFC tasks evaluating
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Figure 5.4: Results of Experiment 1 for language and image-schemas condi-
tions based on sound type.

descriptive qualities of audio samples, using image-schemas significantly improved the

quality of responses collected for all sound types.

Effect of visualization for sound types

Figures 5.4 (a) and (b) plot the F-Scores for pitched sounds and textures based on

language and image-schema conditions. Interestingly, even though pitched sounds are

generally considered more recognizable than noisy textures, participants evaluated both

sound types comparably. There were no significant differences found in their evaluation

using language (U(N1 = 30, N2 = 30) = 522.5, p = 0.268) or image-schemas (U(N1 =

30, N2 = 30) = 491.0, p = 0.497). Therefore, for simple 2AFC type of experiments,

complexity in sound space does not significantly affect the quality of responses submitted

in an online listening test within the same visualization condition.

Pairwise Agreement

Table 5.1 shows the median pairwise agreement between participants across trials in

this experiment. The results indicate that experiments using image-schemas showed

significantly better agreement as compared to language-based conditions.

To examine the effect of the number of participants on the overall agreement in this

experiment, we plot the aggregated median pairwise agreement by simulating an increase
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Table 5.1: Pairwise participant agreement for Experiment 1.

Sound Type Experimental Median Agreement
Condition [95% CI]

Pitched Sounds
Image-Schema 0.897 [0.850, 0.944]
Language 0.549 [0.502, 0.624]

Textures
Image-Schema 0.803 [0.707, 0.898]
Language 0.384 [0.292, 0.515]

Figure 5.5: Median pairwise agreement for pitched sounds and textures under
the image-schemas condition as the number of participants increases for Exper-
iment 1. The dotted lines indicate the number of participants needed to reach
full agreement for this condition.

in the number of participants for the image-schemas condition as shown in Figure 5.5.

We adapt this method from [29]. First, we shuffle the order of the responses from all

participants across all trials and then progressively add the responses to calculate the

overall median agreement for each sound type and repeat the process 1000 times. The

dotted lines show the number of participants needed for maximum consensus for each

condition. The plots indicate that we need at least 25 participants to reach the maximum

consensus for that condition in this experiment for both pitched sounds and textures.

This implies that for simple 2AFC tasks, especially in the absence of ground-truth labels,

the number of participants needed to evaluate sounds with a significant agreement does

not depend upon the complexity of the sounds under test.

Relationship between task time and quality of responses

We study the effect of the time participants take to complete a task on the quality of

responses submitted. For this, we first sort the participant responses in an increasing

order of time taken to complete the trials. We then analyze the correlation between

the time spent on the trials and the average quality (F-Score) of response. For pitched
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sounds, under both visualization conditions, the time taken to complete the task strongly

correlated with the quality of responses submitted (r(28) = .717, p < 0.05 for image-

schemas condition and r(28) = .819, p < 0.05 for the language condition). For textures

under the language condition, time spent on task negatively correlated with quality

(r(28) = −.817, p < 0.05). For the image-schema condition, these sounds moderately

correlated with quality (r(28) = .407, p < 0.05). Therefore, participants who spent a

longer time on a task could submit better responses for recognizable pitched sounds.

For unrecognizable noisy textures, participants who spent a longer time on the task

submitted lower-quality responses when using the language condition than the image-

schemas condition. This implies that staying longer on the task evaluating textures might

have increased the cognitive load and confusion amongst the participants, leading to

poorer responses when using the language-based conditions, which was slightly alleviated

when using image-schemas.

5.5 Experiment 2

In this section, we address RQ3.2 by using image-schemas to design interfaces for a lis-

tening test. We conduct an experiment to evaluate the perceptual linearity of sounds

generated by linearly varying control parameters of a generative model. Controllable or

conditional synthesis is an important task in generative audio modeling, which typically

comprises a deep neural network trained on audio data in conjunction with some condi-

tional parameters. For example, generative models conditioned on pitches from different

musical instruments can be explicitly controlled to generate different timbres for a pitch

[13]. Generally, control parameters used to train such models are varied linearly in the

parameter space. Their effect, however, in the generated audio is not always guaranteed

to be perceptually linear [36, 167, 224]. There is thus a need to evaluate the perceptual

sensitivity to the linear parametric variation of such AI-generated sounds.

5.5.1 Study Design

As with Experiment 1, this experiment applies the same recruitment criterion and follows

a 2 × 2 between-subjects factorial design using the factors of visualization and type of

sounds. Once again, a preliminary test (with N = 3) was conducted to analyze and

adjust the time allotted and reimbursements for this experiment.
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(a)

(b)

(c)

Figure 5.6: Experiment 2 image-schema design is shown in (a), and the screen-
shot of the implemented interface using image-schemas is shown in (b). A
language-based interface was implemented as shown in (c).

5.5.2 Listening Test Interface

To conduct this experiment, we designed and implemented an interface to rank-order

and proximally space some audio samples. This test aimed to present 7 short audio

samples - 2 references and 5 sounds under test - and ask the listeners to order the 5

samples perceptually between the two references. For the image-schema condition, a

listening test interface followed the source-path-goal schema as shown in Figure 5.6 (a).

All audio samples were visually represented as thumbs along a path in between the source

and goal reference sounds. Figure 5.6 (b) shows a screenshot of the user interface using

image-schemas. Black thumbs represented the reference endpoints at the left and right

extremes. Colored thumbs along a slider represented the remaining sounds under test.

The participants were asked to hover their mouse pointers over the thumbs to listen to



96 5.5. Experiment 2

the sound samples and to drag the thumbs along the slider to position them with respect

to the static and immovable references as well as each other. The ‘hover to listen’ and

‘drag to position’ interactivity were implemented to reduce fatigue amongst listeners

from having to click a web audio component to play each sound multiple times while

positioning the sounds between the references.

Given the number of comparisons participants needed to perform, we split this task into

3 sub-tasks to mitigate its complexity. First, the participants were asked to listen to

and position the sounds as discussed above. Then, they were allowed to listen to the

‘arrangement’ they created by clicking a button that played each audio sample in the

order in which they were positioned along the slider. This step was intended to aid

the participants in positioning the samples better by listening to them in an automated

sequence. After this step, they were asked to listen to the arrangement again and fine-

tune each sample’s position based on the reference endpoints and their proximity to their

neighbors. Participants were allowed to submit the task only after completing all steps.

The interfaces developed for this experiment, along with their audio samples, can be

listened to on our website5.

The language-based interface, shown in Figure 5.6 (c), was designed and implemented

to ensure the same functionality as the screens with image-schemas. Here, participants

listened to audio samples presented using the HTML5 web audio interface and entered

the ranks or distances using number drop downs between 0 and 100. The two rank-order

and proximity based on distance ’arrangement’ sub-tasks (just as in the image-schema

trials) played the audio samples in an automated sequence based on the order indicated

by the numbers in the drop downs.

5.5.3 Sound synthesis

We select two audio samples to explore RQ3.2 with varying sound complexities. The

pitched samples were generated using the Syntex [225] DS BasicFM 1.0 synthesizer which

generates a frequency modulated sine wave governed by the algorithm y[t] = sin(2π ∗
cf ∗ t + mI ∗ sin(2π ∗mf ∗ t))), where cf is center frequency, mI is the modulation

index and mf is the modulation frequency. To create this dataset, we fix the modulation

frequency and modulation index to ∼ 7.5Hz and 12.5, respectively and linearly vary the

signal’s center frequency between ∼ 330Hz and ∼ 660Hz (the left and right references,

respectively). The center frequencies for the remaining 5 other samples were randomly

selected between the two references. Each of these 7 audio samples was 2 seconds long.

5https://purnimakamath.com/thesis-related/chapter 5/

https://purnimakamath.com/thesis-related/chapter_5/
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For texture samples, we used a recorded sound made by water filling a container, with

the container’s fill level as the control parameter guiding the progression of the audio

samples. The left and right references were chosen with fill-level=0 (empty container)

and fill-level=1 (full container). The five other samples under test were random fill levels

between the two references.

5.5.4 Participants & Procedure

We recruited N = 25 participants for the 4 experimental conditions, resulting in 100

participants. They were paid $1.20 for completing the task. Each task had one perceptual

ordering trial. The mean task completion times were 6.63(SD = 2.23) and 7.31(SD =

3.5) minutes for image-schema and language-based conditions. As in Experiment 1,

participants were allowed to complete a task only from one experimental condition.

5.5.5 Measures for evaluation

We analyze the results from this experiment by first transforming the proximity or

distance-based values captured from the participant’s responses to ranked data. We

use the measure of F-Score and agreement (formalized in section 5.4.6) on this ranked

data to evaluate the quality of responses. In addition to these measures, we use -

• Cosine Similarity Score: The rank-based F-Score fails to account for the vari-

ance in the actual distance values captured (e.g., while a participant’s response of

[1,2,3,4,5] matches in rank to a ground truth of [11,28,32,49,51], it differs largely

in the actual proximal distance/spacing captured). To capture this variability in

distance, we treat each participant’s response as a 5-dimensional vector and find

its cosine similarity with the ground truth. Cosine similarity for two vectors is

formalized as -

similarity score =
x · y

∥x∥2∥y∥2
(5.2)

where x and y are the participant’s response and ground truth. The numerator is

their dot product, and the denominator is a scalar product of their Euclidean (L2)

norms.
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Figure 5.7: Results of Experiment 2 for pitched and texture sounds based on
the type of visualization.

5.5.6 Results

As with Experiment 1, we use non-parametric tests to analyze our data for this exper-

iment. Our test-retest reliability coefficient for the pitched sounds condition increased

from 0.18 at N = 2 to 0.95 at N = 22. For textures, the reliability coefficient increased

from 0.25 at N = 2 to 0.95 at N = 18. Thus, N = 25 is sufficient for analyzing all

conditions in this experiment.

Effect of visualization on quality of responses

For this experiment, Figure 5.7 (a) and (b) plots aggregated rank-based F-Scores for

the responses for each sound type. Overall, the experiments with image-schemas did

not result in significant differences using rank-based measures (Mdn = 0.82 for pitched

sounds and Mdn = 0.58 for textures) in comparison with language-based experiments

(Mdn = 0.72 for pitched sounds and Mdn = 0.5 for textures). This implies that most

participants in both image-schemas and language-based conditions could rank-order the

audio samples correctly.

To further study the difference between the two conditions, we tested our hypothesis

using distance-based similarity measures defined in section 5.5.5. Figure 5.7 (c) and (d)

plots this similarity measure for each sound type. A Sheirer-Ray-Hare test for the quality

of response comparison across visualization and sound types showed that visualizations

had a significant effect on the overall quality of responses (H(1, 98) = 7.13, p < 0.017),

adjusted for Bonferroni correction α = 0.05/3 = 0.017). In post-hoc Mann-Whitney

tests, both pitched sounds (U(N1 = 25, N2 = 25) = 400.5, p < 0.05) and textures
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Figure 5.8: Results of Experiment 2 for language and image-schemas condi-
tions based on sound type.

Table 5.2: Pairwise participant agreement for Experiment 2.

Sound Type Experimental Median Agreement
Condition [95% CI]

Pitched Sounds
Image-Schema 0.896 [0.850, 0.941]
Language 0.813 [0.731, 0.859]

Textures
Image-Schema 0.630 [0.476, 0.783]
Language 0.498 [0.417, 0.651]

(U(N1 = 25, N2 = 25) = 410.0, p < 0.05) report significant differences in evaluation

when using image-schemas. Thus, interfaces designed using image-schemas were better

at capturing differences in spacing or proximity of the sound samples than language-based

interfaces.

Effect of visualization for sound types

Figure 5.8 shows the rank-based F-Score and distance-based similarity measures for

pitched and texture sounds for both visualization conditions. Even though the tex-

ture sounds used in this experiment (water filling a container) were recognizable and not

very noisy, pitched sounds were evaluated significantly better than textures when using

both rank-based data (U(N1 = 25, N2 = 25) = 404.5, p < 0.05) as well as distance-based

similarity scores (U(N1 = 25, N2 = 25) = 430.0, p < 0.05).
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Pairwise Agreement

Table 5.2 shows the median agreement for each condition for this experiment. The con-

ditions using image-schemas for both pitched sounds and textures reported significantly

better agreement amongst participants than using language. U(N1 = 25, N2 = 25) =

514.0, p < 0.05 and U(N1 = 25, N2 = 25) = 421.0, p < 0.05 for pitched sounds and

textures respectively. As in Experiment 1, we also analyze the effect of the number of

participants on the overall aggregated agreement for the image-schema condition. The

maximum consensus in this experiment is reached for pitched sounds by aggregating

agreement from 9 participants. For textures, we needed 18 participants for maximum

consensus. Therefore, for complex tasks, the number of participants needed for consensus

varies depending upon the type of sounds under test. Recognizable pitched sounds need

fewer participants as compared to textures.

5.6 Discussion

5.6.1 Use of image-schemas for audio quality description

We explored RQ3.1 by conducting an experiment with a simple 2AFC type of task

and using pitched sounds and textures of longer duration (∼ 14 seconds). We found

that by visually articulating the descriptive audio quality under test, we improve the

overall quality of responses collected via listening tests for these conditions. Using image-

schemas, we employ conceptual models [202], which are both language and experience-

agnostic and thus provide means to understand audio quality concisely. These findings

reinforce previous research on the clarity and brevity of instructions [83, 85] and extend

it to audio evaluation.

We term the pitched sounds used in this experiment as more recognizable than noisy

textures as they had some semantic meaning associated with them. For instance, the

timbre and/or MIDI pitch of the pitched sounds used in this experiment changed as

the sounds progressed in time. In section 5.4.7, we saw that such pitched sounds were

evaluated comparably to noisy textures under both visualization conditions. This implies

that the quality of responses in a simple 2AFC experiment does not depend on the sound

space complexity introduced due to the type of sound being evaluated in a test.
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5.6.2 Use of image-schemas for designing listening test in-

terfaces

We explored RQ3.2 by experimenting with a complex rank-ordering and proximity spac-

ing type of task and using pitched sounds and textures of shorter duration (∼ 2 seconds).

The interfaces designed using image-schemas afforded the listeners the ability to visually

“see” the reordered clips as compared to the language-based condition and thus might be

the reason why they performed better. Interestingly, the participants using both inter-

faces could rank-order the sounds equally well. The advantage image-schemas condition

had over language-based interfaces was its ability to allow participants to capture prox-

imal distances between the sounds better. This can be attributed to the fact that the

slider-based image-schema interface allowed for better visual positioning of the sounds

under test in relation to each other as compared to the number of drop-downs in the

language condition. Therefore, it is sufficient to use language-based interfaces for sim-

ple rank-ordering tasks and image-schema-based interfaces for more granular proximity

spacing tasks.

In this experiment, participants evaluated pitched sounds better than textures under

both conditions. This could be attributed to the fact that textures have more percep-

tual feature dimensions that could be used for evaluation compared to pitched sounds.

For instance, for the texture sample of water filling a container, several other perceptual

features, such as the rate of the water filling, the material, and the resonances of the

bucket, etc., co-vary with the fill-level [226] confounding the parameter under evalua-

tion. Furthermore, most participants on AMT are novice listeners and may be more

intuitively familiar with pitched sounds than multi-event textures. Also, they may be

more comfortable working on tasks with speech transcription, sound event detection, or

music evaluation and less familiar with rank-ordering tasks for textures, thus lowering

the quality of responses collected.

While in Experiment 1, the number of participants needed for maximum agreement

did not depend upon the sound type, in Experiment 2, pitched sounds needed fewer

participants than textures (see Section 5.5.6). This finding has practical implications

when selecting the number of participants in a listening test. Thus, when task complexity

is high in a listening test, a larger sample size is needed for unrecognizable multi-event

soundscapes to match in agreement with recognizable pitched sounds evaluated under

similar conditions.
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Measuring perceptual linearity on a continuous scale, as done in Experiment 2, can

be modeled as discrete pairwise comparisons as suggested by prior work in other do-

mains [227, 228]. It should be noted that while discrete pairwise comparisons are easier

to evaluate, we cannot record some important perceptual distance-based differences be-

tween the samples under evaluation. Thus, for AI-generated audio, we find pairwise com-

parisons are great for rank-ordering tasks, and interfaces designed using image-schemas

are advantageous for more granular perceptual distance-based evaluations.

5.6.3 Amazon’s Mechanical Turk as representative crowd-

sourced platform

Besides AMT, the audio AI community uses crowdsourcing platforms such as Zooinverse6

and Crowdflower7 to conduct audio evaluations. Each platform’s affordances drive the

type of experiments that can be conducted and the data quality collected. For instance,

Zooinverse is a research-focused volunteer-driven platform, where participants’ motiva-

tion to contribute may not be driven by monetary incentives [206]. Comparatively, many

participants on platforms such as AMT or Crowdflower are driven by the payment struc-

ture associated with the task as income generation is their primary motivation [229–231].

Furthermore, Zooinverse-like platforms connect researchers and participants more intrin-

sically via their project discussion boards, which assists in a deeper connection and com-

munication of the research compared to the asynchronous email-based communication

afforded by AMT. Projects set up on Zooinverse are usually long-running and undergo a

review by the Zooinverse team, who are assigned experts to assist researchers with best

practices for setting up their experiments. Such affordances potentially allow for better

overall quality of responses from volunteer-driven platforms than paid crowdsourcing.

We chose AMT to conduct our experiments because it supports short-term evaluation

tasks and the convenience of experiment administration and setup. Though AMT does

not afford between-subjects experimentation out-of-the-box, we set up our listening tests

to log participant actions and disallow them from attempting multiple tasks. In ad-

dition, we explore communicating tasks and instructions, acknowledging asynchronous

communication between participant and researcher. Our findings should hold even in a

collaborative environment provided by platforms such as Zooinverse.

6https://www.zooniverse.org/
7https://www.crowdflower.com/

https://www.zooniverse.org/
https://www.crowdflower.com/
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5.6.4 Other Applications of image-schemas

Image-schemas assist in visually, spatially, and statically representing the temporal at-

tributes of artifacts, such as environmental audio. These metaphors can be extended

to other modalities, including video, text, speech, and haptic effects. When analyzing

narratives in videos and text, we can assess the comprehensibility of the sequence of

events or the overall “shape” of the narrative using these visualizations. This approach

is promising for evaluating various AI-generated linear or non-linear narratives in text or

videos.

Besides visualizing the narrative sequences, image-schemas can also be used to evaluate

the affect (emotion) the narratives induce. By integrating image-schemas, such as up/-

down, container, and source-path-goal, participants can determine the sequence of emo-

tions induced through the temporal content in video, text, or speech. The image-schemas

for containers can represent various affect categories, while the directional schemas (up-

/down) can indicate the intensity of the emotion. Additionally, the source-path-goal

schema can assist in capturing these emotions directionally over time.

Another promising application of image-schema metaphors is for evaluating AI-generated

haptic effects. Haptic effects are brief touch experiences used to convey immersive ex-

periences for consumers in AR/VR applications. Visual metaphors can be employed for

AI-generated haptic effect assessments by prompting participants to spatially sketch the

temporal responses of the haptic actuators placed on different areas of the skin or body.

5.7 Summary

In this chapter, we highlighted the importance of using the visual metaphors of image-

schemas in designing listening test interfaces for AI-generated audio. We introduced

novel visual constructs to evaluate sound progression in rank ordering and pairwise com-

parison types of tasks and verified their effectiveness in improving the overall quality

of responses in a listening test. Furthermore, we discuss the implications of using such

visual constructs to evaluate sounds with varying complexities. Our findings shed light

on the value of using such stationary constructs to communicate the temporal quality

of audio for future researchers working at the intersection of generative audio modeling

and human-computer interaction.





Chapter 6

Understanding opportunities for

generative models in sound design

practice

Chapter Synopsis

In this chapter1, we address RQ4. Recently, many studies have adopted generative

AI to assist in sound design co-creation. Most of these studies focus on the needs of

novices and less on the pragmatic needs of sound design practitioners. This chapter

aims to understand how generative AI models might support sound designers in their

practice. We designed two interactive generative AI models as Creative Support Tools

(CSTs) and invited nine professional sound design practitioners to apply the CSTs in

their practice. We conducted semi-structured interviews and reflected on the challenges

and opportunities of using generative AI in mixed-initiative interfaces for sound design.

We provide insights into sound designers’ expectations of generative AI and highlight

opportunities to situate generative AI-based tools within the design process. Finally, we

discuss design considerations for human-AI interaction researchers working with audio.

1With minor modifications from:
Kamath, P., Morreale, F., Bagaskara, P. L., Wei, Y., & Nanayakkara, S. (2024). Sound Designer-
Generative AI Interactions: Towards Designing Creative Support Tools for Professional Sound De-
signers. In Proceedings of the CHI Conference on Human Factors in Computing Systems. CHI ’24:
CHI Conference on Human Factors in Computing Systems. ACM. doi:10.1145/3613904.3642040
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6.1 Introduction

Generative audio models for music [14, 132, 232] have been well studied for their potential

to support co-creation in the human-AI interaction literature [15, 16]. And yet, despite

the growing adoption of AI models as co-creation tools for music production [45], very few

empirical studies exist to assess their potential to offer new possibilities to the practice

of sound design.

Most human-AI interaction studies for audio focus on the applicability of steerable gener-

ative AI interfaces to empower novice users in their creative goals [15, 16, 46–48]. Expert

sound design practitioners spend years developing their creative design process and build-

ing inventories of sounds to apply in their next design project [4]. As such, their needs,

expectations, and ways of working with AI-based tools necessarily differ from those of

novices. Thus, in this paper, we aim to explore: How can generative AI-based co-creation

tools assist expert sound designers in their creative practice?

We developed two interactive generative AI models as Creative Support Tools (CSTs) [17,

50] to explore the potential of this technology in assisting sound designers. As in [233],

we use an experimental design strategy of deploying interfaces in real-world contexts to

provoke discussions and answer research questions. We deployed our CSTs with sound

designers to gather information about their expectations of AI, as well as the current

challenges and opportunities for generative AI in their practice. Further, we captured

the designer’s interpretations of AI by designing the interactivity with our CSTs by in-

corporating elements of “use-qualities” [53] (also see Chapter 2, Section 2.2.4) such as

pliability and ambiguity [89, 91]. While we developed two CSTs in this study, we did

not aim to compare them with each other. Instead, we aimed to provide designers with

two unique ways of interacting with AI-based tools to gather their reflections [74, 233]

on using those tools.

We introduced our CSTs to nine professional sound designers and asked them to apply

them in a creative endeavor in their practice. We conducted semi-structured interviews

with the participants to reflect on their creative goals and the sounds they created using

the CSTs. We gained three key insights through inductive reflexive thematic analysis

[234] of the interviews:

• First, we outline an AI-assisted sound design process where we find how sound

designers situate AI-based tools within their design process in practice. While

performing creative tasks, we found that sound designers used AI models for per-

forming fast iterations to create novel sounds and as an alternative to manual field
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recording activities. They also used such sounds as layers to give the perception

of plausibility to unreal sounds.

• Next, we found how sound designers worked with unpredictability and ambiguity

and developed an intuition for interacting and controlling AI-generated sounds. We

also found that designers often realized or understood failure modes in AI-generated

output and worked towards ways of using ambiguity in their sound design.

• Lastly, we furthered our understanding of sounds designers’ expectations of gener-

ative AI to build convincing cinematic experiences in terms of creator agency and

owning the creative process

In summary, our contributions are three-fold: (1) we developed a novel understanding of

generative AI in supporting creative exploration for the practice of sound design; (2) we

developed two AI-based CSTs for future studies on using audio generative AI as a tool

for sound designers; and (3) we offered five design recommendations for future human-AI

interaction research for sound design.

6.2 Audio Generative AI CST Design

To develop our two CSTs, we adopt an approach from the “XAI for arts” community,

where researchers working at the intersection of explainable AI (XAI) and arts developed

novel ways to explore latent spaces of GANs for creative endeavors [74, 75]. In particular,

we use the Example-Based Framework (EBF) [184] (from Chapter 3) and the Semantic

Factorization (SeFa) algorithm [154] to explore the latent space of an unconditionally

trained StyleGAN.

We designed the interactivity for our interfaces based on the principles for AI controlla-

bility outlined in Weisz et al. [235]: by using (1) domain-specific controls (for interface-

1 ), and (2) technology-specific controls (for interface-2 ). Domain-specific controls use

audio descriptors or acoustic parameters to control the generation from an AI model.

Technology-specific controls, on the other hand, are generic controls that depend on

the generative algorithm and are not necessarily related to the audio domain. Such

technology-specific controls allow users to perform manipulations or edits directly in the

latent space of the generative model. They are typically effective in making changes to

the semantic attributes of a sound.

Both interfaces used the same underlying StyleGAN model and differed only in how the

generation was controlled. Further, both interfaces provided opportunities to interact
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Figure 6.1: A conceptual diagram (a), and screenshot (b) of interface-1. (a)
A sound designer can use the domain-specific controls from 1○ to generate a
synthetic reference sound seen in 2○. This synthetic reference sound is used to
“query” or “search” the latent space of an AI model shown in 3○ to generate a
matching AI-generated sound in 4○. (b) The screenshot shows the placement of
the controls and the synthetic and generated sounds as viewed by the designer on
the web interface. Please see Appendix B.2 for a link to a Google Colaboratory
version of this interface, and B.4 for image attributions.

with two StyleGANs - (1) one trained on a dataset of ‘Hits & Scratches’ called the

Greatest Hits Dataset [166], and (2) another trained on a dataset of ‘Environmental

Sounds’ from the DCASE 2023 Foley Sound Synthesis Challenge [127]. Using the ‘Hits

& Scratches’ model, the sound designers could generate and explore a small set of timbres

related to the impact sounds made by a drumstick hitting various hard and soft surfaces.

Using the ‘Environmental Sounds’ model, the sound designers could generate and explore

more complex timbres and sounds such as dog barks, footsteps, gunshots, motor vehicles,

rain, and keyboard clicks. Further, we added some preset sound configurations on both

interfaces, which participants could test during the study. These presets included timbre

parameter settings, such as impact sounds on hard and soft surfaces or environmental

sounds like a medium-sized dog barking.

All underlying AI models were built and trained using Pytorch [236] and were running

on a single RTX 3090 GPU. The interfaces were built as web-based technologies such

as Streamlit2 and ReactJS3 to run on web browsers for ease of access. Please see ap-

pendix B.2 for architecture and implementation details for both interfaces.
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6.2.1 Interface-1 - Using domain-specific controls

For interface-1, we employed the use of domain-specific controls [235] based on acoustic

parameters such as frequency band, impulse width, fade-in, fade-out, etc. to guide the

generation of the sounds. For this interface, we use the EBF framework [184] outlined in

Chapter 3. EBF uses a set of domain-specific controls to create a synthetic sound using

signal processing techniques. This sound is then used to “query” or “search” the latent

space of the StyleGAN for a matching, AI-generated sound. A conceptual diagram and

screenshot of this interface are shown in Figure 6.1. We designed this interface with

the use-quality of pliability [53, 89]. Pliability, as described by Löwgren, refers to the

responsiveness of the design material in assisting the designer in iteratively refining the

generated artifact to match their creative goals. Interface-1 in this study is designed to

enable sound designers to iterate and generate sounds by modifying a synthetic proxy. A

user of this interface conveys their ideas to the AI model by designing a synthetic sound.

The AI model, in turn, uses the synthetic sound to search and generate a matching,

more realistic sound. The resulting audio for both the synthetic reference as well as

the AI-generated sounds is displayed on the webpage. Additionally, we provided visual

feedback to the users by displaying the spectrogram for each sound along with the audio

on the webpage. We include this spectrogram visualization to allow the participants to

focus on the spectromorphology of the sounds [101], or how the frequencies in the sound

change or morph over time.

While we designed this interface to provide opportunities for reflection [74, 91] by giving

greater flexibility in generating multiple types of synthetic sounds, not all synthetic

references resulted in meaningfully matching AI-generated sounds. This unpredictability

in the AI-generated sounds is due to the limitations of the training data used to train

the GAN. We allowed this unpredictability on this interface by design to gather our

participants’ intuition about AI limitations.

6.2.2 Interface-2 - Using technology-specific controls

For interface-2, we employed the use of technology-specific controls [235] based on the

SeFa algorithm outlined in [154]. In SeFa, dimensions for controlling generation are

extracted by performing an eigendecomposition of the learned weights of the StyleGAN.

That is, using eigendecomposition, the weights matrix of the StyleGAN are factorized

into basis vectors which can then be used to perform latent space manipulations to

2https://streamlit.io/
3https://react.dev/

https://streamlit.io/
https://react.dev/


110 6.3. User Study

Figure 6.2: A conceptual diagram (a), and screenshot (b) of interface-2. (a)
To edit the audio in 1○ such that the number of impacts in the sound increases, a
sound designer can use the technology-specific controls extracted from the latent
space of a StyleGAN shown in 2○ to perform direct latent space manipulation
shown in 3○ and 4○, resulting in the edited audio sample in 5○. (b) The screen-
shot shows the placement of the controls and the generated sounds as viewed
by the designer on the web interface. Please see Appendix B.2 for a link to a
Google Colaboratory version of this interface, and B.4 for image attributions.

control semantic audio descriptors on a sound. Such semantic dimensions are usually

unlabeled and are typically open to user interpretation of them. Users usually interpret

each semantic dimension by performing and observing a few edits made by changing

a dimension on the sound. We chose the top 10 dimensions (top 10 eigenvalues after

eigendecomposition, see appendix B.2.2) found by the algorithm to perform sound edits

on this interface. A conceptual diagram and screenshot of this interface are shown in

Figure 6.2. As for interface-1, we displayed the spectrogram along with the resulting

audio on this interface.

We designed this interface with the use-quality of ambiguity [53, 89, 91]. That is, we de-

signed this interface to provide opportunities for reflection [74] by leaving the dimensions

unlabeled. We allowed the designers to interpret this ambiguity in the dimensions based

on the intuition they developed while engaging with the controls on this interface.

6.3 User Study

6.3.1 Participants

We recruited nine professional sound design practitioners (six male, two female, and one

preferred not to say) for this study through snowball sampling. We used this sampling
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strategy to reach academic and professional sound designers working in the industry.

Starting with the authors’ existing network, we asked individual participants whether

they knew other practitioners interested in participating in our study. In our email, we

indicated the study would take at least 1.5 hours to complete. Our sample size was

thus pragmatic based on the number of sound designers willing to invest time in this

study. Participants had diverse backgrounds in sound design, from designing sounds

for products, movies, music, and games to creating sound for data sonification projects

(Table 6.1). The median self-reported years of experience in sound design was 10 years

(Min = 3 years, Max = 48 years). They were offered USD45 gift cards as a token of

appreciation for their time in the study.

Table 6.1: Participant Details

P1 New Zealand 8 years

Sound design for visual media such as

short films, documentaries, and games.

Using sound as an aid and embellish-

ment to story-telling. Experience in

recording and mixing music. Under-

taken audio post-production work.

P2 Spain 48 years

Sound designer and electronic music

composer. Focused on audio percep-

tion and programmatic ways of creating

sound. Worked on programmable syn-

thesizers and libraries for various plat-

forms. Educator for sound art and de-

sign. Currently focused on audio AI re-

search.

P3 Hong Kong SAR (China) 9 years

Sound design for movies and animated

films. Audio post-production for TV

programs. Experience recording and

mixing music, and foley sound effects.

ID Country Experience
Description of Sound Design Expe-

rience

Continued on next page
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Table 6.1: Participant Details (Continued)

P4 New Zealand 7 years

Original sound creation and implemen-

tation for online and theatrical films,

games, music production, and live per-

formances. Field recording. Post-

production work includes dialogue edit-

ing, sound mixing, audio restoration,

and foley mixer. Educator for sound de-

sign.

P5 Netherlands 20 years

Designed sound to build brand experi-

ences for various international brands

and airport authorities. Designed

“sonic identities” for brands ranging

from sound installations for their pub-

lic spaces as well as designing product

sounds. E.g., the sound of a car’s engine,

doors opening or closing, etc. Focussing

also on data sonification projects.

P6 Italy 3 years

Sound design for vehicle or gardening

simulation video games working directly

with environmental soundscapes. De-

signing quad ambiance and sound ef-

fects, and implementing them in the

game engine.

P7 Germany 10 years

Sound designer and composer. Designed

sounds for over 40 games. Also worked

on sound design for films as well as some

movie trailers.

P8 Singapore 10 years
Electroacoustic music composer using

Ableton Live and FL Studio.

P9 Singapore 47 years

Music composition for ambient/rock

and experimental/avant-garde genres.

Worked for theatre and other projects

that are in between sound design and

music. Co-leader for a desktop Foley

system. Also, writing music software.

ID Country Experience
Description of Sound Design Expe-

rience
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6.3.2 Procedure

Figure 6.3: Overview of the study procedure

Figure 6.3 shows an overview of the procedure. The participants were sent a link to a web

page outlining the task instructions4. This web page included a 3-minute introductory

video explaining the tasks and providing a brief overview of the interfaces. To minimize

any order effects, participants were randomly assigned into two groups. The first group

attempted the tasks with interface-1 first before interface-2. The second group performed

the tasks in the reverse order.

We first asked participants to complete a short, close-ended, predefined task to familiarize

them with our interfaces. Subsequently, we asked them to complete an open-ended

creative task to generate sounds they might use in their own practice or performance.

As our participants were located in different parts of the world, they were asked to

perform these tasks at their own pace and time and record their screen activity when

performing the open-ended creative task. This approach was adapted from the video-cue

recall method [51, 237] from the interactive arts literature for our purpose.

We subsequently conducted a semi-structured interview to gauge the participants’ ex-

perience and feedback on the generative AI interfaces. Our server logs indicated that

overall, the participants spent a median of 46.28 minutes (Min=24.11 minutes, Max=2

hours, 31.6 minutes, SD=44.46 minutes) exploring and familiarizing themselves with the

interfaces. Participants recorded their screen activity when performing their open-ended

creative tasks as instructed. For these creative tasks, the median screen recordings for

each interface were 2.44 minutes long (Min=1 minute, Max=20.25 minutes, SD=5.36

minutes). We asked the participants to send us their screen recordings before the in-

terview. The interviewer watched the screen recordings before conducting the interview

and highlighted parts of the recording where participants employed different exploration

strategies when using the interfaces. We discussed the participants’ creative goals dur-

ing the interview using the highlighted parts of the recordings as discussion prompts.

The recordings were used as discussion prompts only and not as data for analysis. All

4See link on our webpage - https://purnimakamath.com/thesis-related/chapter_6/#ta
sk-instructions

https://purnimakamath.com/thesis-related/chapter_6/#task-instructions
https://purnimakamath.com/thesis-related/chapter_6/#task-instructions
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interviews were conducted remotely and lasted for a median of 40 minutes (Min=32 min-

utes, Max=60 minutes, SD=10.19 minutes). Please see Appendix B.1 for the interview

questions.

6.3.3 Data Analysis

Due to the exploratory nature of this work, we chose an inductive, reflexive thematic anal-

ysis (TA) approach [234] for analyzing the interview transcripts. One author conducted

all interviews. Two authors (including the interviewer) collaboratively analyzed the data

using a bottom-up approach. We first familiarized ourselves with the transcripts indi-

vidually and independently reading them at least twice. We then coded the transcripts

with quotes relevant to our research objectives. Next, we collaboratively combined and

refined our codes using Atlas.TI5. As recommended in [238], we use a semantic coding

strategy during our coding process where each code captures a semantic observation.

For instance, a quote from a participant such as “some randomness (in the AI-generated

output) is always refreshing” is considered as one code. Quotes from other participants

making similar observations may also be tagged to the same code. This code, amongst

similar other codes, is then organized under a theme such as “Non-determinism assists

creativity”. Through this process, we iteratively refined and identified 76 codes. We use

affinity diagramming to assist us in collaboratively organizing the codes into 12 themes.

These themes are organized under the 3 sections in the results section below.

In reflexive TA, meaning is not “excavated” [239] from the data, but is subjectively

generated through a researcher’s interpretation of the data [234]. This nature of the

analysis makes it difficult to formalize a sample size or define data saturation (or the

minimum number of participants needed before stopping data collection) [239]. Thus,

instead of defining data saturation for this study, we resorted to deliberately seeking a

varied group of participants based on their geographic location, background in sound

design, and years of experience in sound design. With this, we tried to gather diverse

views and opinions of AI during our study.

6.4 Thematic Analysis Findings

In the following three subsections, we organized the themes from our inductive, reflexive

thematic analysis into three meta-themes: (1) An AI-assisted sound design process; (2)

5https://atlasti.com/

https://atlasti.com/
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Working with unpredictability and ambiguity; and (3) Sound designers’ expectations of

AI for sound design.

6.4.1 An AI-assisted sound design process

6.4.1.1 Fast iterative exploration

Sound designers are constantly seeking new sounds to use in their work. “Like if you’re

working on a sci-fi game, then you can’t just use run-of-the-mill sounds. And just so

people are always looking for new sounds, like a new palette so to speak”(P1 ). Some

commonly shared frustrations our participants observed in their current design process

were around the manual processes of creating new sounds on tight deadlines or low

budgets. Creating and manipulating new sounds takes time, and it can be frustrating as

“a lot of back and forth happens when someone (a client) has something on their mind

that they can’t verbalize and then you’re trying to figure out what they want”(P1 ). In

such cases, being able to quickly and iteratively create novel sound samples using AI is

beneficial.

P1: “It’s really useful to be able to go through 20 iterations in less than

half the time that it would take me to do it in the traditional way. And

then because you can adjust so many parameters so quickly, then you’re

not stopping and changing things. You’re not editing waveforms, you’re not

changing plugins. So I think it is really useful [...] I think people tend to

overstate what creativity is. But to me personally, it is to be able to go

through a lot of things quickly and to select the right bit of sound for that

purpose.”

6.4.1.2 An alternative source to field recording

Often, sound designers sourced new sounds by field recording them and further processing

them to develop new sound palettes. Such manual recording activities can be frustrating

as they cannot always control a recording situation. “You can’t tell everyone in a city

‘Be quiet for a second. I need to record this thing”’ (P4). Typically, a 5-second recorded

audio takes a couple of hours to clean, denoise, and process before use. In such cases, AI-

generated sounds can be considered as a suitable and convenient alternative for “finding

interesting source material” (P7).
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P4: “Most likely it would be I spend a day with the interface making a bunch

of sounds and I just record all of them. I’d delete the ones that I don’t think

will be useful and I’d keep all the rest [. . . ] I’d almost treat this like field

recording in a sense, but instead of me actually going outside to record it, I

am going into this interface to capture it.”

6.4.1.3 Creating unreal but tangible sound palettes

The bulk of sound in a film is usually added in post-production [2]. Sound designers

typically develop and use a custom palette of sound effects for each film [9]. “In sci-fi

movies [. . . ] we want to give people the kind of ‘metal’ feelings. That this world is made

from science, and not really an actual world. To feel that it’s a different world compared

to my living world” (P3). Thus, designers are often on the lookout for unreal, but

plausible-sounding sound elements that assist in building immersive experiences for the

consumers of such media. Using AI-assisted sound design tools in this study, designers

were able to create such fantastical or alien, but tangible sounding palettes.

P4: “Obviously you can make stuff like this in a synthesizer, but the problem

is it sounds like a synthesizer, it doesn’t sound real.[. . . ] And while this (AI-

generated sound) doesn’t sound like something that’s real, because it’s in some

way based on something that is a real recording, it still has a kind of tangible

quality to it. And that’s kind of what the value is. You can make synthetic

sounds that still sound somewhat like there’s a real object doing it.”

Although the models used in this study were not trained with the goal of generating

unreal sounds, the interactivity encoded in them enabled the designers to generate such

sound palettes. Five designers(P1, P3, P4, P5, P7) noted that the generative AI tools

were better used for generating such sounds rather than replicating real-world recordings.

P7: “We are always on the hunt for those kinds of elements where we can

layer something that actually exists with something that does not exist to

enhance immersion for the consumer. Those are the elements that are more

interesting for me personally. If I want to have the recording of a falling

tree, I can just go out and record it. I don’t need a tool for that.”

Further, six sound designers (P1, P3, P4, P5, P7, P8) we interviewed said that they

rarely used sounds from their own libraries or external databases as-is in their projects.
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They usually processed the recordings through ‘effect chains’ (i.e., using a Digital Audio

Workstation (DAW) to process sounds through a chain of effects such as adding/removing

distortion, reverb, etc.) to fit the requirements of different projects. They found using

the generative AI tools in the study useful as part of such effect chains. The interactivity

in the tools could be used to extract textural components from various sounds, which

can be used as layers to enrich other recorded or synthesized sounds.

P7: “(Describing their creative task result) For me, that would be like a sci-fi

layer or that could be used in some trailers when there is something popping

up. Or when a spaceship flies by. You can use that as a sweetener.”

Interviewer: “What is a sweetener?”

P7: “Yes, say you have a sound, but then you put something (.) on top of

it like spices. And then it’s like, wow! That’s new!”

6.4.1.4 Annoying, but Fun!

Both AI-based tools in this study embodied non-determinism in controlling the generated

sounds by using either synthetic sound queries (interface-1) or unlabeled dimensions

(interface-2). This nature of the AI-based tools was appreciated by our designers for

their ability to allow exploration and serendipitous discovery of novel sounds, even when

the sounds were not in line with the participant’s original task goal. For instance, when

performing his open-ended task with interface-2 P2 said:

P2: “I understood that I was exploring and there was some discovery. So

every once in a while you’ll hear me say, ‘Oh, I like that!’. Even though

it wasn’t necessarily exactly what I was looking for, it had something that I

liked”

Further, most designers noted that while this exploratory nature of the AI-based tool was

fun, it would be annoying or frustrating to work with it on task-oriented work regularly,

especially on a deadline.

P4: “Well, one thing I found fun was seeing how the AI responded to the

synthetic reference and how it didn’t listen to me, right? So sometimes I

made a change and it didn’t quite reflect that and I found that interesting.

But if I worked with this every day and I was on a project with a deadline

and I really wanted it to listen to me, then I’d imagine it would stop being
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fun and it would start becoming frustrating trying to get it to do those specific

things.”

6.4.2 Working with unpredictability and ambiguity

6.4.2.1 Exploration strategies

For interface-1 (domain-specific controls), the general exploration strategy we found

amongst designers was following a ‘broader first, then narrower’ strategy. For instance,

participant P5 said she would experiment broadly first, say using a wider range of fre-

quencies, and then narrow down to the specific perceptual outcomes she had in mind

by employing reduced listening (reduced listening is when designers concentrate on the

sound for its own sake, as a sound object, independently of its causes or meaning [240]).

P5: “And as I say in the synthetic reference, this worked quite well be-

cause the sounds were like (MIMICKING THE SOUND OF A CICADA

TRILLING), so I selected frequencies that are typical without too much think-

ing. Let’s say higher frequencies. I did everything quite rough, not knowing

the system and then trying to achieve this to get as closer as I could (to the

goal).”

For interface-2 (technology-specific controls), to understand the parameter space they

were exploring, participants employed multiple strategies such as - (1) simply playing

around with each control and observing its effect on the generated sound (P1, P2, P5,

P8, and P9 ), or (2) by using a ‘Systematic Change without Compounding’ where the

parameters are reset to the original positions first and only one parameter is changed

at a time to observe or isolate its change (P4), or (3) by using a ‘Min-Max’ strategy by

observing the generated output at the minimum and maximum limits of a parameter’s

range (P3, P7). While P3 used the ‘Min-Max’ strategy to clearly isolate the change

made by a parameter, P7 used that strategy to see how far he could push a control to

get something “new or weird”(P7) out of it.

Overall, we observed that the participants who approached the exploration with both

interfaces systematically discovered new sounds and were generally satisfied with the

exploration, even when the outcomes did not match their original goals. One participant

(P6), who reportedly approached the exploration randomly and without a goal, found it

difficult to get any satisfactory output and gave up performing the task. Although other

participants discovered interesting new sounds from their explorations, they expressed
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their desire for more predictability in the controls so as to be able to use the tools

regularly.

6.4.2.2 Opportunities from ambiguity

As outlined in Section 6.2, both interfaces used the same underlying AI model but

with different interactivity mechanisms governed by different levels of ambiguity to

control the generation of sounds. All designers in this study noted that while both

interfaces could generate unpredictable outputs from the AI models, the controls on

interface-1 (domain-specific controls) were more intuitive and comprehensible than those

on interface-2 (technology-specific controls). This was primarily because interface-2 had

(1) unlabeled controls and (2) a higher number of controls than those on interface-1.

When using interface-2, some designers noted that the exploration seemed like a “trial

and error” (P7). In contrast, others (P2, P3, P4, P5) found that this “lowest form of

control” (P4) gave them greater opportunities for exploration as there were more control

parameters to “twist” (P3).

P4: “One thing, of course, is it’s less intuitive in the sense that nothing’s

labeled, [. . . ] but by not giving it a name, it actually made more sense

in a way, because you just see that as an abstract quality, the AI is doing

something with it. So just naming them arbitrarily kind of made you pay

attention to what they were actually doing more and not expecting something

that it wasn’t going to do. The lack of specificity makes it feel open in a

different way.”

Further, when using interface-2, all designers expressed the need to be able to label

the dimension based on their preferences. Designers gravitated towards labeling the

dimensions based on either semantic changes (P1, P6, P8) or acoustic changes (P2, P7)

they observed in the generated output.

6.4.2.3 Modes of working with audio interfaces

Although designers indicated that labeling dimensions would enable them to use the

interfaces better, especially when using interface-2 (technology-specific controls), two

designers (P3, P5) reported that they relied on listening to understand the role of each

parameter, even when using labeled controls on interface-1 (domain-specific controls).
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Such designers built an intuitive knowledge about the effect of each control parameter

on the generated sounds and did not rely on the descriptions provided on the interface.

P5: “Usually I don’t even read descriptions much. I just listen to what comes

out. It’s a nicer way of exploring for me. And then when I’m familiar, I can

control it.”

Further, while using interface-1, we noticed five designers (P1, P2, P3, P5, P8) stopped

listening to the synthetic sounds and focused on listening to the effect of the parameter

change directly on the matching AI-generated sound itself. Reading and observing the

changes on the synthetic spectrogram was sufficient for them to understand the effect

of their changes. Thus, they could focus more on the effect of their changes on the

AI-generated output.

P2: “Since [..] the AI-generated (sound) was really what I was exploring,

[..] and I can read the spectrograms well enough to know that I just didn’t

have to go through that intermediate step. So spectrograms were helpful in

kind of building out what the goal was.”

Finally, two designers (P3, P8) found it easier to create atomic units of sounds, such as

a single impact sound or a single dog bark. Then, fixing and editing that single unit’s

important semantic and perceptual aspects and looping or repeating it in a DAW. This

gave them better control of the creative process in adjusting the variability of the sounds

to their liking.

P3: “I want to create the sound that is, actually can be used in my work. I

think it should be one - how to say, one should sound, not (THUD THUD

THUD THUD). Only one (THUD). If I need more of this, I can copy-paste

(loop or repeat it in a DAW).”

6.4.2.4 Understanding unpredictability of the response

As outlined in section 6.2.1, for interface-1 (domain-specific controls), we gave greater

flexibility in generating the synthetic sounds, while not all synthetic sounds resulted in

meaningfully matching AI-generated sounds. For instance, the Greatest Hits dataset was

limited by a certain range of rate of impact (number of impact events per second). When



Chapter 6. Opportunities for generative models in sound design practice 121

designers tried to query the AI model for higher rates, the model generated unpredictable

responses. During our interviews, we discussed the nature of the generated sounds and

asked our participants if they understood the reasons behind the AI’s unpredictability

due to its limitations. Three participants (P2, P4, P5) were familiar with the idea that

AI was limited by its training data. Participant P2 had experience with building and

using AI models, and participants P4 and P5 were familiar with popular generative

models such as ChatGPT [19] or DALLE-2 [20]. Participants’ prior experience with

the limitations of generative AI across different modalities might have made it easier to

reconcile their understanding of the failure modes in our interfaces, especially when the

changes they made did not align with their expectations. For instance, while explaining

the unpredictable response from interface-1, P4 said:

P4: “Often, changes in synthetic reference didn’t clearly correlate to the

changes in the AI-generated sound. [. . . ] Sometimes the fade-out parameter

didn’t really do that much to the AI-generated sound.”

Interviewer: “Can you tell me why you think that is happening?”

P4: “Why? Not exactly sure why it wasn’t following along exactly, but I’m

guessing it’s because it’s trained on a certain kind of response that already

has a certain type of fade-out innate in it, and so when you change the fade-

out, there’s only so much it can change based on what kind of input it has

had.”

6.4.3 Sound designers’ expectations of generative AI

6.4.3.1 Cinematic effect over accuracy

Through our interviews, we found that interviewees focussed mostly on the overall percep-

tual aspects of the sounds they worked with. Aspects such as where the sound originated

from were not necessarily important to them. For instance, although we set up our AI

CSTs to generate ‘Hits & Scratches’ impact sounds made by a drumstick, the sound

designers used the models to create novel base sounds and sweeteners for footsteps (P1),

fantastical ‘adolescent monsters’ (P3), trilling cicadas (P5), sci-fi whooshes and flying

machines (P7), and as layers over percussive drum beat (P8).

P1: “I think the most important thing, whether it’s movies or games, is

not accuracy so much, but immersion. So the footsteps that you hear in a

movie, do not sound like that in the real world. Like, if you punch someone
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in the real world, it doesn’t sound anything like what it does when Harrison

Ford punches someone. The whole point (of sound design) is immersion and

entertainment.”

6.4.3.2 Creative agency and ownership

Currently, most research in generative AI focuses on building omnipotent intelligent

agents that can do it all—agents that can create art or compose music directly instead of

being an enabler for creativity. While tools with greater AI agency would work well for

novice users, for sound design experts, there are more opportunities for AI as an enabler

rather than a creator in itself.

P4: “So a lot of other AI seem to be trying to replace a creator so that

someone can get sounds who don’t know how to make them, whereas this one

seems more useful for someone who already knows how to make sounds but

just wants to add to their arsenal by having another tool.”

In [4], Susini et al. emphasized that sound design as a practice is not just concerned with

generating new sounds, but is also associated with a designer-led research-oriented design

process grounded in psychoacoustics and sound cognition. Although most generative AI

systems focus exclusively on the generation of new sounds, they do not focus on “what

the sound should do, or what it should be” (P5). As such, the results from our interviews

suggest that the best use of AI is as a Creative Support Tool, as a part of a larger creative

process owned and controlled by the designer.

P5: “I would like to keep the ownership of the creative process. I imagine

the sound as it should be because it comes from a long research [. . . ] The

creative design process is much more than making the sounds. It is more

about knowing what you want and finding the right tools.[. . . ] So if the AI

is also part of the research process, it could have good ideas.”

Finally, our results indicate that AI algorithms have the technological capability to pro-

vide means for creators with novel ways of creating sound for their work, which tradi-

tional signal-processing techniques cannot do. For instance, in our study, we observe two

such instances where designers were able to discover novel base sounds for their sound

palettes during exploration or extract sweeteners or textural components to layer over

other sounds (see section 6.4.1.3). This capability to modify audio signals in novel ways

gives creators greater opportunities to create new artifacts.
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P4: “The approach where it is more about creating the individual units of

sound rather than the finished product of sound, makes much more sense. It

seems at least to be more achievable than what AI seems to be doing in the

visual space. Because it doesn’t always necessarily understand composition,

it gets things roughly in place. What I’ve seen on people using AI for sound

is that it’s good to get good approximations, but not necessarily always to do

things all the way.”

6.4.3.3 Need for focus on AI for sound design

Most current research in audio synthesis focuses on music and speech production, and

very little work exists to model environmental sounds [241]. This feeling was conveyed

by P4 during the interview:

P4: “A lot of the applications you’re seeing right now are kind of in the

infant stages a lot of the time. From what I’ve seen so far in sound there

haven’t been that many great uses of AI so far, at least ones commercially

available or available on the market. And a lot of that, I think is because

they’re taking a more music approach where they’re trying to streamline the

job of a music producer.”

Further, given the recent surge in text-to-audio models, two designers (P4, P5) felt

that AI models that needed to be prompted using text would be a barrier for sound

design, which needs granular, continuous, and “intimate control” (P2) to design sounds.

Developing controls over AI models where designers can “leverage their current skills”

(P5) instead of learning newer ways to prompt AI models would be more beneficial for

creator use.

6.5 Discussion

In this study, we sought to investigate how generative AI technologies could support

sound design practitioners in their creative work. We found that AI-based CSTs could

assist sound designers in their creative process by providing means to iterate over ideas

quickly, generate fantastical and novel-sounding elements, and reduce the need to man-

ually source individual artifacts via field recording for their creative work. Further, we

found that although the unpredictability of controlling the AI-generated artifacts assisted
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in the serendipitous discovery of new sounds, the exploratory nature and unpredictability

in controlling the generation could hinder task-oriented work. Further, in our study, the

sound designers employed various strategies while exploring the design space generated

by the AI-based CSTs. These strategies helped them better understand the limitations

of the generation capabilities of AI-based tools. Finally, while AI algorithms are usually

incentivized to accurately replicate real-world sounds, in contrast, we found that sound

designers were more interested in the overall perceptual aspects of the sound than its ac-

curacy. We thus found that AI-based CSTs could easily be integrated as part of a larger

creative design process owned and controlled by the designer. Such CSTs can produce

novel sound elements that sound designers can incorporate into their compositions as

layers over other sounds or use as individual components for a better cinematic effect

than the accuracy in their compositions.

6.5.1 AI assistance in the practice of sound design

Recently, human-AI interaction researchers have been increasingly interested in under-

standing how mixed-initiative creative interfaces (MICIs) [66] can be applied in a work

setting in different domains of creative work [235, 242, 243]. In our work, we respond

to these questions in the context of sound design by proposing a mode of working with

generative AI where designers perform exploration and creation using AI-based CSTs.

Findings from our exploratory study suggest that such tools can assist in a fast iterative

exploration (section 6.4.1.1) to help sound designers find novel sounds to use in their

work. This finding is in line with some recent research on CSTs in the visual domain, in

music composition, and in storytelling where algorithmic tools were used predominantly

for idea generation [15, 16, 24, 27, 244, 245]. Further, such AI-based tools can generate

synthetic surrogates of real-life sensory information (such as, in our case, field record-

ings (section 6.4.1.2)) which can constitute realistic and convincing alternatives to this

information. Consequently, (sound) designers could save the time and resources needed

to obtain this information in the first place. This observation could be extended beyond

the realm of sound and also include visuals and other sensory modalities.

In [23], researchers note that while the unpredictability (section 6.4.2) emerging from AI-

based tools supports creativity, it could be a hindrance to task-oriented creative work.

We further this understanding for sound design (section 6.4.1.4) and find that sound

designers might overcome this limitation by performing exploration (section 6.4.2.1) as

a separately focused task [246], by employing “reduced listening” (P5), to “build a library”

(P4) of novel sound palettes for use in their projects. The possibility of using CSTs in

this way to generate novel individual units of sounds, instead of entire compositions, gives
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professionals another tool “in their arsenal” (P4) and more ownership of their creative

process (section 6.4.3.2).

6.5.2 Constrained and Unconstrained Randomness

Previously, researchers have investigated the role of constrained and unconstrained ran-

domness in interactive systems on user experience [247, 248]. In [247], using an example

of a music-listening interactive system, the authors observe that, at times, unconstrained

randomness can contribute to rich user experience (such as serendipity). They also note

that this positive experience depends upon the size of the audio library, where large-sized

libraries can have detrimental effects on the listener experience. In such cases, adding

constraints to randomness (by constraining content) allows the users to manipulate or

control the affective state of their user experience. We observe this duality of unpre-

dictability and constraint in our study. Our impact sounds ‘Hits & Scratches’ model

was smaller and more constrained in terms of the variety of sounds generated compared

to the ‘Environmental Sounds’ model, which generated sounds from seven classes. Our

participants found models with large variances in timbres, such as the environmental

sounds model, detrimental to targeted creative exploration. For instance, participant

P7 reported: “The variety of sounds that I got out of the (environmental sounds model)

was very extreme. I think that a tool that offers such a broad variety of results is like a

two-edged sword.”

Further, our interface-1 was constrained in terms of providing means to explore the AI’s

latent space using only synthetic sounds, compared to interface-2, which provided means

for unconstrained exploration directly in the latent space of the model. While using

our CSTs, P6 reported: “(Interface-1) was just like playing with an old synthesizer or

something. It was quite easy to grab things and just tweak them and see what happened.

(With interface-2) none of these settings did anything I was expecting at all.”. Our

findings thus indicate that constraints implemented by either smaller models (such as

the ‘Hits & Scratches’ model) or by using synthetic sounds for steering the CSTs assisted

designers in better understanding the capabilities of AI (see section 6.4.2.4) than when

using larger models or interface-2.
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6.5.3 Reflections on designing and implementing AI-based

tools for sound design

On selecting interactive AI models: While we implemented two CSTs in this study,

our aim was not to compare them with each other but to provide our participants with two

unique ways of interacting with the underlying AI model. While selecting algorithms for

interactivity, we aimed to explore algorithms that worked primarily in a post-hoc fashion

(i.e., worked on existing pre-trained GAN models). We found that using methods such

as SeFa [154], we could integrate any available pre-trained GAN models from existing

marketplaces [249–251]. Further, using methods such as EBF [184], enabled us not only

to use domain-specific controls for exploration but also additionally constrain multi-class

large audio models using class-based soft constraints [160]. Using these soft constraints,

the designers could target their exploration to a part of the latent space oriented toward

that class. Thus, we found both these methods effective in providing a wide range of

exploration options [49] within our CSTs. Such methodologies for designing interactivity

over AI models can be easily extended to other modalities, such as images. In light of

the recent environmental impact [252] due to the training of large generative AI models,

we suggest future CSTs, for all modalities including sound design, could make use of

existing pre-trained models by leveraging such post-hoc methods for interactivity.

On visualizing sounds: While designing our interfaces, we visualize the spectrogram

of the generated sound because the controls on both interfaces modified the spectromor-

phology [101] of the sound. Interestingly, through our interviews, we found that these

visualizations provided means for the designers to describe their creative goals in spectro-

morphological terms. For instance, participants used terms such as “seeing the individual

events” (P2), “fade-in is quite long” (P4), or “removing the initial transient and soft-

ening it to leave the body and tail” (P4), etc. Previously, researchers in the explainable

AI (XAI) for arts [75, 253] used latent space visualizations to explain or debug their cre-

ative goals. We build upon this work and suggest that spectrogram visualizations could

provide a great way for designers to communicate their creative goals and understand

AI-based CSTs’ output.

6.5.4 Ambiguity in interactive user control

Interface-2 in this study was designed based on the use-quality of ambiguity. We delib-

erately left the dimensions unlabeled on this interface to allow the designers to interpret

them based on their intuition. The ambiguity in the dimensions made the exploration
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“more open (P4)”(section 6.4.2.2), and different participants came up with different

semantic or acoustic explanations for the effect of each dimension on the edited sound

(section 6.4.2.1). Participant P6 reported that Dimension 6 on the interface seemed to

semantically change if the sound source was “outside or inside the room”. Further, P1

reported that Dimension 7 and 10 were similar to acoustic high-pass and low-pass filters,

and P3 commented that Dimension 10 changed the pitch of the sound. By naming the

dimensions differently and using semantic or acoustic labels, the designers could use the

sound design space in their creative work in a personalized way.

Further, with interface-2, participants had to adopt a more varied number of strategies

to meaningfully explore the sound design space (section 6.4.2.1) compared to interface-1.

Therefore, although interface-2 opened up more personalized avenues for the designers

to interact with the AI, the ambiguity in the dimensions got in the way of its agentive

flow [254], a highly engaging state of interacting with an AI-based CST. The ambiguity

in the controls in interface-2 made the designers focus more on the intricacies of the

system rather than on their creative output.

6.6 Design recommendations for human-AI in-

teraction in sound design

In this section, we outline five design recommendations for interactive generative AI. We

specifically reported some quotes capturing rich insights from our expert practitioners to

inspire our readers.

DR1: Design interactivity using intuitive controls

From among our participants, P2 and P9 had extensive prior experience designing au-

dio interfaces, synthesizers, and programming desktop foley systems. Their advice on

designing a good perceptually relevant set of controls for sound synthesis systems is as

follows. They suggest a good control should be:

• Perceptually monotonic: If you moved a control forward to change the sound

by an X amount, then moving it more in the same direction should do more of X.

• Perceptually linear: This principle builds upon monotonic controls. If you

moved a control by an X amount in the forward direction and then moved it
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the same amount in the reverse direction, both changes to the sound should be

perceptually the same.

• Perceptually orthogonal: If you had multiple controls, a change in one control

should be independent of others.

These principles are especially important when developing technology-specific controls

(as on interface-2), as these controls are extracted by an algorithm from the latent space

of a generative model. We thus propose future human-AI interaction researchers focus

on constraining such algorithms to yield specific changes based on these principles.

DR2: Variety is a two-edged sword

The general trend in large language models or image generation research is to build

large overarching generalizable AI models that cater to generating a large variety of

images, art, or text. A similar trend is observed in audio, where a large audio model

generates music, environmental sounds, and speech [132, 255]. Such large audio models

can perform well as tools for exploration but are less useful for task-oriented work. This

is particularly due to the complexity of the learned latent space. Small changes in the

parameter space of such models can lead to large perceptual changes in the generated

sounds. Participant P7 termed this variety as a “two-edged sword”. We thus propose

that future interactive AI applications for sound design focus on allowing designers to

explore smaller models trained on a more targeted range of sounds. Or provide means

to constrain the exploration of large audio models based on class, semantics, or other

perceptual aspects of the sound (see section 6.5.3).

DR3: More cinematic effect than accuracy

In section 6.4.3.1 and 6.4.1.3, we showed that our participants valued perceptual aspects

of the generated sounds and the AI’s ability to generate ‘unreal but tangible’ sound

palettes, more than the accuracy or the origin of the sound. Currently, most audio AI

algorithms objectively incentivize the replication of real-world sounds. While real-world

sound replications are useful as an alternative to field recording (section 6.4.1.2), they

will have very limited use in being able to generate novel sound palettes. We thus propose

that there is value in pursuing a research approach where AI models “do not replicate

real life too well”(P4) and can extract textures and patterns from sounds. This approach

would give artists and creators more creative tools in their arsenal rather than simply

automating the generation of real-world sounds they can record easily.
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DR4: Seeing sounds as an alternative to listening

Previously, Cartwright et al. [29] demonstrated that when using visual representations

of sounds such as spectrograms, they collected better annotations for sound events than

when using audio alone. Visual spectrogram representations of the sounds allowed an-

notators to ’glance-and-click’ on the sound events while listening, which improved the

accuracy of the collected annotations. In our study, we make a similar observation.

Sometimes, the designers used the spectrograms on the interfaces as a proxy for listen-

ing. “It’s very nice to have the spectrogram because this gives you a good forecast. It is

a good shortcut to imagine how it will sound like so you can even not listen to it” (P5).

We thus propose that using such visual representations of the sounds can reduce the

cognitive load associated with making small edits and stopping to listen to the generated

sounds, especially when doing exploratory work.

DR5: Improving the explainability of dimensions

As observed in sections 6.4.2.3 and 6.4.2.2, although most designers found the ambiguity

in dimensions a hindrance to task-oriented work, they observed that giving them the

ability to personalize the dimension names would improve the usability of such tools

and the explainability of the dimensions (especially with interface-2). “With the 10-

D interface, I found myself wanting to change the label after I explored it so that I

could remember what it did for me” (P2). Further, in our conversations with P6 and

P7, we observed that for understanding and learning controls on synthesizer interfaces,

designers usually relied on not just the names of the controls but also their ranges and

units of control. For instance, units such as ‘dB per octave’ are associated with filtering

frequencies. P6 observed that on interface-2, all dimensions operated in a range of [-5, +5]

with no units, which made it difficult to memorize the function of each control. We thus

propose future human-AI interaction research to encompass dimensional controllability

for sound models to rescale the ranges and adjust or assign units on controls to fit existing

techniques on commercial synthesizer interfaces.

6.7 Summary

This chapter investigated how sound designers can use generative audio AI models in their

creative practice. We designed and implemented two interactive audio AI CSTs and in-

vited nine professional sound designers to apply the CSTs in their practice. Through
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semi-structured interviews, we gathered insights on how to situate AI-based tools in the

sound design process, the sound designer’s ways of working with unpredictability and am-

biguity in AI, and their expectations of generative AI-based tools. Further, we reported

five design recommendations for future interactive AI-based creative support tools for

sound design. Through this work, we hope to bring focus to this area of interactive

audio AI and explore opportunities to improve AI assistance in the practice of sound

design.



Chapter 7

Discussion & Conclusion

In this chapter, we synthesize the insights gained from the past chapters on designing and

evaluating AI-based Creative Support Tools (CSTs) for sound design in response to this

thesis’s aims, research questions, and grounding in human-centered design philosophy.

We conclude by outlining the limitations and future directions for this research.

7.1 Summary of Findings

In this section, we revisit our aims and research questions to synthesize the overall con-

tributions and present them below.

7.1.1 Aims

This thesis aims to investigate approaches to designing and implementing steerable AI-

based CSTs for sound design. It also investigates ways to perceptually evaluate such

steerable models and build our understanding of the challenges and opportunities of

applying such models in a practice-oriented sound design environment.

To achieve these aims, we applied principles from the Human-Centered AI (HCAI) frame-

work to develop CSTs aligned with the creative process and workflows grounded in sound

design theory. This work demonstrates novel ways to design and evaluate CSTs for sound

design and creativity by:

131
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• Supporting exploration by enabling means to explore the AI-based CST’s design

space to assist in novel sound discovery. Using frameworks outlined in this thesis,

sound designers can explore this design space to search for sounds based on their

semantic properties of interest by using synthetic sounds to “sonify” (artificially

re-creating) or sketching their creative intent.

• Steering by way of interactive controls by facilitating interactivity with the

AI-based CST for performing creative tasks in sound design, such as sound morph-

ing. Using frameworks outlined in this thesis, sound designers can steer AI-based

CSTs to edit semantics or morph two or more sounds in a fine-grained way.

• Designing interfaces for non-audio experts when conducting perceptual lis-

tening evaluations for descriptive audio qualities using AI-generated sounds on

crowdsourced platforms.

• Designing for creative engagement in practice by employing the use-qualities

of pliability and ambiguity in AI-based CSTs. By enabling exploration for novel

sound discovery and using emergent properties of the latent space as ambiguous

and unnamed controls, this work demonstrates how sound designers interpret the

controls and explore the AI-generated design space for their creative work.

This work expands on the human-centered AI framework, bringing new knowledge to

designing and evaluating such systems for creativity using audio, specifically for the

creative pursuit of sound design.

7.1.2 Research Questions

[RQ1] How can we perform exploration using generative audio models trained on unla-

beled data to generate environmental sounds using user-defined semantic attributes?

In Chapter 3, we introduced a novel guidance framework, “Example-Based Framework”

(or EBF), to find user-defined attribute guidance vectors in the latent space of a GAN

trained on audio textures. Through comprehensive objective and subjective metrics, we

demonstrated that this framework enabled us to perform fine-grained semantic edits to

the generated sounds. This method enabled novel ways to explore the latent space of the

StyleGAN trained on unlabeled textures, such as impact sounds and the continuously

varying texture of water filling a container. We also demonstrated the simplicity of ex-

tending this framework to other creative tasks, such as semantic attribute transfer, where

users can select a semantic attribute on a randomly generated texture and transfer that
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attribute to another texture sample. Using frameworks such as EBF, users can “probe”

pre-trained generative models and engage in exploration to understand the breadth of

the system’s capabilities in a human-centered way.

[RQ2] How can we build steerable generative audio models that support creative sound

design tasks such as audio morphing?

In Chapter 4, we introduced the creative task of morphing sounds for sound design.

We used an existing pre-trained latent diffusion-based text-to-audio (TTA) model and

designed fine-grained controls over discrete text prompt tokens while morphing two or

more sounds. We outlined the “MorphFader” algorithm to morph sounds by interpo-

lating the cross-attention matrices generated per layer and per diffusion step. Through

objective and subjective metrics, we demonstrated that this framework enabled us to

perform continuous, granular morphs between two text prompts. This method enabled

novel ways to creatively explore the text-based semantic space generated by TTA models.

We developed interfaces using MorphFader to demonstrate the ability of our method to

generate plausible and semantically relevant audio morphs in real-time.

[RQ3] How can we perceptually evaluate audio generated using generative audio models

for their descriptive semantic qualities using non-experts on crowdsourced platforms?

In Chapter 5, we first motivated the need for perceptually evaluating sounds generated

by steerable generative audio models for their descriptive qualities of sound progressions,

such as smoothness or goodness of the morphed sound or realism or plausibility of the

generated sound. Based on the metaphors of image-schemas we designed visual con-

structs and interfaces to evaluate sound progressions or morphs in rank ordering and

pairwise comparison tasks. We conducted experiments on a crowdsourced platform with

non-expert listeners who may or may not have music or audio backgrounds. Using both

pitched sounds and audio textures, we verified the effectiveness of visual constructs in

improving the overall quality of responses collected in a listening test.

[RQ4] How can steerable generative audio models assist professional sound designers in

their creative practice?

In Chapter 6, we studied how generative audio-based CSTs can assist professional sound

designers in their creative practice. We designed and implemented two interactive gen-

erative audio models as CSTs and asked nine sound design professionals to apply the
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CSTs in pre-defined and creative tasks. Through semi-structured interviews, we asked

the participants to reflect on their use of the generative models to help us gather infor-

mation about their expectations of AI and the current challenges and opportunities for

generative models in their practice. This qualitative methods study helped us outline

an AI-assisted sound design process. We also developed an understanding of how sound

designers worked with unpredictability and ambiguity in the AI-generated output. We

also outlined five design recommendations to support the creative task of sound design

for future researchers of audio AI-based CSTs.

7.1.3 Synthesized Contributions

In this section, we propose new concepts to extend the knowledge and theories of HCAI

and creativity support and combine design insights from the previous chapters for de-

signing future human-centered AI-based CSTs for sound design.

7.1.3.1 Exploration by “Sonic Sketches”

A key proposition of this thesis is enabling exploration of the AI-based CSTs design

space based on user-defined semantics. This is especially due to the lack of datasets with

strong semantic labels for training AI-based CSTs. The novel approaches outlined in this

thesis enable exploration by capturing the sound designer’s creative intent in the form

of synthetic sounds—an approach that we define as exploration by “sonic sketches”.

As the name suggests, sketches are simplified caricatures of real-world phenomena. For

sound, we define sonic sketches as signals representing the designer’s creative intent by

synthetically synthesizing the semantic aspects of the sound they want to generate. As

shown in Chapter 3, such synthetic sounds can be generated by the parametric acoustic

synthesizers [93–96] and physical modeling techniques [97–99] from the domain of audio

signal processing.

Previously, in Chapter 2, HCAI principle of “capturing intent” [64] and other interaction

design techniques of visual “sketching” [62] for exploring creativity and using sketches for

rapid iterative exploration [65] were introduced. This thesis builds upon these techniques

to propose a design paradigm for AI-based CSTs for sound exploration. The framework

outlined in Chapter 3 relies on a synthetic sound generator, which can be granularly

controlled to generate sonic sketches. While such sonic sketches are representative of the

designer’s creative intent, they lack the realism and the textural aspects of real-world

sounds. The framework uses the sonic sketches to “search” or “query” the AI-based
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CST’s latent space to produce a matching real-world adjacent sound. Typically, the

parameters to control the generation of environmental sounds can vary greatly. For

example, when generating dog barks, the designer may want to control the pitch of the

bark, while for footsteps, the semantic control might involve changing the material of

the floor. Exploration based on sonic sketches is especially useful for such CSTs as it

enables designers to creatively explore the design space without the limitations induced

by pre-defined labels or controls devised by the algorithm’s developers.

7.1.3.2 Novel “Exaptations” for Creativity Support

Chapter 2 of this thesis discusses how human creativity occurs in a conceptual space.

Creativity can be combinatorial (i.e., combining the previous two ideas to create some-

thing new), exploratory, or related to transforming existing ideas into something new.

As such, human-centered CSTs must be designed to support novel ways of creating new

artifacts. Typically, generative AI models are trained for a specific task. Different mod-

els and frameworks exist that conditionally generate sounds [13, 116], others that morph

sounds [115] or generate sounds using text-based controls [131, 132]. In lieu of designing

newer algorithms specifically designed to cater to every new task, in this thesis, we out-

line an approach to extend the functionality of existing, pre-trained large foundational

audio models through a method we term “exaptation for creativity support.”

With origins in evolutionary biology, the term exaptation refers to repurposing an idea,

concept, or system for newer uses that expand on its original purpose. In Chapter 4, we

leverage a TTA model trained to generate sounds using a single text prompt to expand its

use to morph two or more sounds without additional training or fine-tuning procedures.

Similarly, in Chapter 6, we leveraged a pre-trained model trained on multiple classes of

environmental sounds and developed class-based “soft constraints” [160] for exploration.

Using these soft constraints, the designers could target their exploration to a part of the

latent space oriented towards those constraints, thus enabling a more focused and deeper

exploration. In both these cases, AI-based CSTs designed specifically for generating

sounds were “exapted” for some additional creative tasks such as sound morphing or

constrained exploration.

In light of the recent environmental impact [252] due to the training of large generative

AI models, we suggest future CSTs, for all modalities including sound design, could make

use of such exaptation techniques over existing large foundational pre-trained models by

leveraging such post-hoc methods for interactivity instead of training newer models for

that specific purpose.
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7.1.3.3 Visual Approaches to Designing and Evaluating Sounds

Another key proposition of this thesis is to design CSTs and perceptual listening test

interfaces for novices and experts. One of the approaches outlined in this thesis involves

using visual spectrograms to demonstrate the generated audio output on a CST. We also

develop a method to use visual metaphors of image-schemas [203] to visually articulate

the quality of sound progression in a listening test with non-audio experts.

In Chapter 6, CSTs used in the study with expert practitioners visualized the spectro-

gram of the generated sound. As the interactive control panels on the interfaces modified

the spectromorphology [101] of the sound (or how the frequencies in the sound change or

morph over time), the visualizations were meant to provide feedback to the designers on

the effect their parameter changes had on the synthetic sounds they were editing. Inter-

estingly, our interviews found that these visualizations provided means for the designers

to describe their creative goals in spectromorphological terms. Sound design experts de-

fined the use of the controls in visual terms, such as “seeing sound events”, or defining the

impact sounds in terms of its “long body and tail” etc. (see Chapter 6, Section 6.5.3).

Further, designers used the spectrogram visual as a proxy for listening, especially while

performing rapid edits and explorations using the CSTs. They found it easier to visually

observe the effect of their parameter changes on their creative explorations instead of

stopping and listening to every small change they made.

Thus, we propose that using such visual representations of the sounds can reduce the

cognitive load associated with making small edits to the generated sounds, especially

when doing exploratory work. Previously, researchers in the explainable AI (XAI) for

arts [75, 253] used latent space visualizations to explain or debug their creative goals. We

build upon this work and suggest that spectrogram visualizations could provide a great

way for designers to communicate their creative goals and understand AI-based CSTs’

output.

Similarly, in Chapter 5, static visual metaphors were used to describe the temporal

quality of audio in a crowdsourced listening test with non-audio experts. The visual

metaphors were also used to design interfaces for complex rank ordering and proximity

spacing tasks. Using such metaphors enabled us to collect better-quality responses in

both cases.

Previously, Cartwright et al. [29] demonstrated that when using visual representations

of sounds, they collected better annotations for sound events than audio alone. Visual

representations of the sounds allowed annotators to ‘glance-and-click’ on the sound events

while listening, which improved the accuracy of the collected annotations. Similarly, in
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our experiments, we used visual metaphors to employ language and experience-agnostic

conceptual models [202] to define audio quality. We thus expand on prior research and

suggest that using the metaphors of image-schemas provides a visual means to understand

temporal audio quality concisely.

7.1.3.4 Creative Engagement with AI-based CSTs

In Chapter 6, we qualitatively studied how AI-based CSTs can assist sound designers in

their creative work. Sound design practice is highly technical and artistic in nature [2],

thus such practitioners know how to work with digital sound editing tools and also have

a keen artistic understanding of developing sound palettes and background scores associ-

ated with the film or game. Thus, one of the central tenets of this thesis was to evaluate

AI-based CSTs for sound design for their creative engagement and use-qualities [53, 89] of

pliability and ambiguity rather than metrics such as efficiency or error-free performance.

The novel approaches for exploration outlined in this thesis enable a pliable exploration

of the AI-generated design space using synthetic sounds (or sonic sketches as described

previously). The advantages of this pliability use-quality are demonstrated by the design-

ers’ use of an AI trained on simple impact sounds to rapidly and iteratively explore the

design space to generate cinematic effects that perceptually resembled trilling cicadas,

footsteps, sci-fi whooshes, and sounds made by fantastical monsters (see Section 6.4.3.1).

In comparison, AI-based systems trained using labels in a supervised way are tightly cou-

pled to the semantics in the labeled data and may not be as pliable or malleable for the

purpose of exploration. We therefore recommend using pliable exploration techniques,

such as those based on sonic sketches, for better creative engagement with an AI-based

CST.

When using the CST with the element of ambiguity [89, 91] in the design of the dimen-

sions in Chapter 6, different participants came up with different semantic or acoustic

explanations for the effect of each dimension on the edited sound. Ambiguity in controls

forced the participants to engage closely with the CST and participate in meaning-

making. This led to participants developing varied exploration techniques, as well as

personalizing the dimensions based on their own understanding of its effect. Typically,

non-determinism is considered to be detrimental to the user experience of an AI sys-

tem [90]. In contrast to such prior work, we found that ambiguity in design allowed

for more serendipitous discovery of novel elements of sound (Section 6.4.1.4) and made

the exploration more pliable or open (Section 6.5.4) for the sound designers during their

creative task in the study. Furthermore, the designers found ways to work around this
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ambiguity by performing creative exploration as a separate focused task and building

inventories of novel sounds from the exploration for use in their creative projects.

7.2 Limitations

7.2.1 Semantic Exploration for Music and Other Sounds

The “Example-Based Framework” (EBF) in this thesis derives semantic guidance vectors

using synthetic sound sketches to perform semantic exploration in the latent space of

a StyleGAN. While we demonstrated the efficacy of the EBF method for perceptually

guiding the generation of audio textures, a potential limitation of extending this approach

to other sound types is in the parametric synthesizer (in Chapter 3, Section 3.3.3). Our

current parametric synthesis technique is limited by its ability to model sounds based on

object resonances or physical parameters of the interacting objects. Newer approaches

must be developed to approximate the synthetic sound queries needed for navigating the

latent space of other sound types, such as timbres from musical instruments and speech.

A potential avenue for such procedural synthesis models can be found in [225].

7.2.2 Approaching EBF-like Semantic Edits using Text-to-

Audio models

The two technical contributions from this thesis, the EBF method, and the MorphFader

method outline novel ways to semantically edit sounds in a fine-grained way. While

EBF operates on smaller GAN-based models trained on a targeted range of sounds,

MorphFader, on the other hand, can semantically edit sounds generated by a large TTA

model. Although we developed two methods to perform such edits on the generated

sounds, in this thesis, we do not perform experiments to systematically compare them

to each other.

In our experiments for evaluating EBF in Chapter 3, we restricted ourselves from com-

paring our method with TTA models because the datasets we used in the study were

unlabelled and not associated with text captions needed to train TTA models. Fur-

ther, we refrained from using off-the-shelf TTA models for comparison as their training

data (such as Audioset [152]) significantly differed from the training data distribution
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under the purview of the EBF method. Although we are unable to perform a system-

atic comparison of our method with TTA models, on our supplementary webpage1 we

demonstrate some text prompts that assist in achieving the semantic editing goals of our

framework using TTA models such as AudioGen [256] and AudioLDM [132]. For impact

sounds, we designed prompts by describing the material properties of the impact surface

and certain acoustic properties of the sound. Similarly, we described the container’s

material properties and fill level for water filling.

While it should be noted that well-engineered prompts would lead to better results, with

the prompts we used (on our supplementary page), we observed that editing a prompt

considerably changed not just the semantic attribute being edited but also other at-

tributes of the sound. For instance, modifying an existing prompt by adding a Rate

feature such as ‘fast’ considerably changed other aspects of the sound, such as Bright-

ness, and removed the ‘long sustain’ from the originally prompted sound. This could

be because, in TTA models, text prompts could be entangled with multiple semantic

attributes of the sounds. To alleviate this effect, in Chapter 4, we elaborate on se-

mantic word-weighting to emphasize certain word descriptors while morphing two or

more sounds. Although word-weighting could be used to edit semantics granularly, such

methods are limited by the existing text captions in training datasets and might not be

useful when modifying user-defined semantics such as “brightness” as done with EBF.

Further systematic experimentation is needed to study these methods for editing any

user-defined semantics on the generated sounds, semantics that perhaps do not exist (or

are out of distribution) of the training data text captions. This study could be conducted

in comparison to or in conjunction with sound-based frameworks like ours.

7.2.3 Perceptually Evaluating Sounds using Visual Con-

structs.

In Chapter 5, we introduced novel visual constructs of image-schemas to evaluate sounds

generated by steerable audio models. We designed and implemented interfaces using such

stationary constructs to communicate the temporal quality of audio in a listening test

on crowdsourced platforms such as Amazon’s Mechanical Turk (AMT). In this section,

we outline some limitations of this work.

Use of Modern Browser Features. All experiments in Chapter 5 rely on the availabil-

ity and use of modern internet browser features such as HTML5 components, drag/drop,

1https://purnimakamath.com/thesis-related/chapter 3/#t-to-a

https://purnimakamath.com/thesis-related/chapter_3/#t-to-a
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sliders, CSS gradients, and variables. Experiments with the visual image-schema con-

structs will not render correctly without these features. Therefore, before participants

started working on the tasks in our experiments on AMT, we performed browser checks

and allowed only participants who used compatible browsers to attempt our trials. Given

the diverse pool of crowdsourced participants with varying desktop and browser instal-

lations, it is difficult to ascertain how many qualified participants could not attempt our

tasks because of this limitation.

Generalizability to Other Datasets. There are some limitations to generalizabil-

ity due to the datasets we use in these experiments. In this paper, we choose a set

of sounds from varied sources - pitched instrument sounds from an existing bench-

marked dataset [79], noisy textures [223], a set of programmatically synthesized pitched

sounds [225] and recorded sounds (water filling a container). While we try to cover multi-

ple sources of sounds - from noisy textures to sounds with events and pitched instrument

sounds - more experimentation with larger datasets is needed to systematically generalize

these results to other sounds.

Development of image-schemas. This thesis explores using the source-path-goal

image-schema for articulation and interface design as both experiments evaluated sound

progression. There is a need to design and develop new icons and interfaces depending

on the evaluation measure in a listening test. Further, more exploratory research is nec-

essary for evaluating audio qualities of stationary sounds using other visual metaphors

such as containment or linkage [202–204] etc. A potential future avenue for research

surrounds the development of a generalized, pluggable web interface or visual library for

metaphors for such audio evaluations.

7.2.4 Sound Design Practice with Rapidly Evolving Gen-

erative Models Landscape

In Chapter 6, we investigated how sound designers can use generative audio models in

their creative practice. Generative audio research is evolving rapidly with newer innova-

tions in building larger, faster, and better-quality generative audio architectures. While

we use StyleGANs [126] to build our CSTs, alternatives based on model architectures

such as Diffusion [132] are emerging as potential alternatives. Although we have tried to

keep our inferences on assessing the potential of generative models for sound design free

from any technical constraints or usability issues, new modes of interactivity will change

how designers perceive and use such models. Therefore, more research will be needed
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in the future to understand how the practice of sound design evolves along with newer

models.

We conducted our study with nine professional sound designers from diverse geographic,

years of experience, and sound design backgrounds. With this, although we present a

rich description of how such CSTs can be used by sound designers in a work setting,

given the qualitative nature of our study, our findings might not generalize to broader

populations. Further, the study was conducted where the participants used the CSTs for

only a few tasks. Our future work will focus on capturing patterns of usage as well as

studying the different parameter exploration strategies in depth in a professional work

setting, over longer periods, and in various phases within the sound design project cycle.

Finally, in our study, we focused on exploring the strategies used by sound designers to

discover new sounds when using AI-based CSTs designed with pliability and ambiguity.

However, it is also important to study these exploration strategies based on the back-

ground, years of experience, and types of projects developed by sound designers. For

example, we need to investigate whether sound designers who typically create sounds

for fantasy movies by editing or “bending” existing sounds make more use of ambiguity

in interfaces compared to designers who do not work on such projects. Additionally,

we need to examine how this ambiguity affects the sound designers’ experience with

these interfaces based on their years of experience, types of projects, and their design

background (such as designing sounds for games, films, or products).

7.3 Future Work

7.3.1 Real-Time Generation

Although the algorithms outlined in Chapters 3 and 4 can generate sounds based on user-

defined semantics, they can generate sounds only of a pre-defined length. For instance,

the examples we demonstrated in this thesis were either two seconds (for the Example-

Based Framework), four seconds (DCASE Challenge), or ten seconds (for MorphFader) in

length. As discussed in Chapter 2, this pre-defined duration or length of sound generation

is due to using architectures, such as StyleGANs and Latent Diffusion Models (LDMs),

that train on 2D spectrogram representations. Certain applications, such as those in the

music domain, need continuous sound generation with fine-grained semantic control in

real-time. Such real-time synthesis is useful in applications of musical performances and

data sonification experiments [57].
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As outlined in Chapter 2, RNNs and Transformer architectures are designed to autore-

gressively generate samples based on past states. While such models are effective in

the next sample generation and can be used to continuously generate sounds indefi-

nitely, training them on raw audio samples is prohibitive memory and performance-wise.

Recently, audio encoding algorithms such as Encodec [257], SoundStream [258], and

Descript Audio Codec (DAC) [259] have been able to generate embeddings for general-

purpose audio, which can be used as an alternative to raw audio when training Trans-

formers and other autoregressive models to generate sounds in real-time. Developing

algorithms that generate sounds of indefinite lengths, assist in semantic discovery, and

perform sound edits and morphs with parametric response times [116] will be a produc-

tive avenue for future work.

7.3.2 Multi-Dimensional Interactivity for Morphing Inter-

faces.

In Chapter 4, we developed and evaluated a method for morphing and semantic word-

weighting sounds generated using TTA models. A productive avenue for future work is

to improve the proof-of-concept interfaces developed in this thesis and study the usability

and applicability of such interactive techniques for sound design.

The interfaces for MorphFader currently provide means to continuously interpolate be-

tween two prompts or perform sound edits using fader-like controls. Such fader controls

resemble the knobs or tracks in most Digital Audio Workstations (DAWs). With the

increasing sophistication of generative algorithms for sound generation, novel interfaces

are needed to encode the multi-dimensional interactivity enabled by the algorithms. Pre-

viously, Tubb et al., [260] evaluated multi-dimensional ways to build expressive (or fine-

grained control of perceptual properties) interfaces for sound creation or editing. They

proposed a 2D XY touchpad and 3D Leap Motion-based controls for such creative tools

and found that creators could successfully use such controllers for their creative work

(although with some practice). Further, Wyse et al., [116] create a new musical instru-

ment they call a “Trumpinet” by morphing the timbres of a Trumpet and a Clarinet to

create musical compositions. They explore a GAN-generated 2D sound space guided by

the timbre and pitch of the two instruments to generate individual pitches for the new

instrument for their compositions.

We take inspiration from such 2D and 3D interfaces and propose future work to develop

morphing interfaces for sound design, such as in Figure 7.1. By morphing between

prompts along the X-axis and weighting between their semantic word descriptors for
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Figure 7.1: Future work: A conceptual sketch for the design of a 2D interface
to explore the semantic sound space generated using text prompts and TTA
models.

each prompt along the Y-axis, we can provide sound designers better opportunities to

explore the semantic sound space between text prompts and their word descriptors than

when using simple 1D interfaces. Furthermore, this idea can be extended to 3D interfaces,

where the X-Y dimension can morph between multiple text prompts, and the Z-axis can

be used to weight their semantic word descriptors.

While such 2D or 3D interfaces provide effective sound space exploration strategies, a few

issues arise when implementing them. The current TTA models (AudioLDM) used in

MorphFader take 2-3 seconds to generate semantically word-weighted sounds and around

5-10 seconds to generate morphs. This delay in sound generation and exploration may

impact the user’s experience using these 2D or 3D CSTs. While the sound designer can

instantly click on any point within the 2D interface, there will be a delay until they

can listen to the sound and further explore the space iteratively. Further, MorphFader

explores linear trajectories within the design space between two text prompts. For a

better interactive CSTs, other exploration strategies, such as spherical interpolation,

must be evaluated and enabled within this design space.
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7.4 Final Remarks

In this thesis, we investigated novel human-centered approaches to designing, imple-

menting, and evaluating steerable generative models and Creative Support Tools (CSTs)

for sound design. Through this work, using steerable audio models, we designed affor-

dances on CSTs that enabled sound designers to convey their creative goals based on

semantically relevant attributes or properties of the environmental sounds they want to

generate. Furthermore, we enabled support for creative tasks such as sound morphing to

allow designers to explore the sound space generated by the generative models in novel

and creative ways. We developed ways to perceptually evaluate the steerable models and

their creative output using subjective listening tests on crowdsourced platforms. Finally,

we studied the challenges and opportunities of applying such models in a practice-oriented

sound design environment.

While the research and literature on generative models for audio is growing, we believe

the new perspectives and human-centered approaches outlined in this thesis will provide

a conceptual and theoretical foundation for future researchers working at the intersection

of human-centered AI and sound design.



Appendix A

Supplementary Material -

Technical Architectures

A.1 GAN Loss Functions

In Chapter 2, Figure 2.2, we introduced G as the generator and D as the discriminator

or the critic. Further, z ∈ Z is the latent space vector. The generator G is trained

to fool the generator by creating samples that closely resemble real data by minimizing

log(1−D(G(z))). Thus, training a GAN is said to be the minmax game between G and

D over the function —

min
G

max
D

V (D,G) = Ex∈X [log D(x)] + Ez∈Z [log(1−D(G(z)))] (A.1)

That is, during backpropagation, we update the weights on the Discriminator network by

performing gradient ascent (to maximize the loss) and gradient descent on the weights

of the Generator (to minimize).

To stabilize the GAN training procedure, [261, 262] propose using Wasserstein distance

or “Earth movers distance” metric along with a gradient penalty (a regularization term)

while computing the discriminator loss. The discriminator loss is thus formalized as —

L = Ez∈Z [D(G(z))]− Ex∈X [D(x)]︸ ︷︷ ︸
Discriminator Loss based on Earth Movers Distance

+λEx̂∈X̂ [(∥∇x̂D(x̂)∥2 − 1)2]︸ ︷︷ ︸
Regularization term

(A.2)
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Where X̂ is a distribution of uniformly sampled linear combination of training data

and data sampled using the generator for the same points. In this thesis, we do not

modify the GAN loss functions. We use this loss formulation throughout this thesis and

different versions of GANs (as seen in the subsequent sections). A more nuanced and

detailed description of the loss formulations can be found in the original literature, such

as [138, 261, 262].

A.2 DCASE Challenge Technical Report

A.2.1 Introduction

For the DCASE Challenge 2023 Task 7 (Track B), Foley Sound Synthesis, we submit two

systems, (1) a StyleGAN conditioned on the class ID, and (2) an ensemble of StyleGANs

each trained unconditionally on each class separately. We quantitatively find that both

systems out-perform the task 7 baseline models in terms of FAD Scores. Given the high

inter-class and intra-class variance in the development datasets, the system conditioned

on class ID is able to generate a smooth and a homogeneous latent space indicated by

the subjective quality of its generated samples. The unconditionally trained ensemble

generates more categorically recognizable samples than system 1, but tends to generate

more instances of out-of-distribution or noisy samples.

Generative audio algorithms using deep neural networks aim to generate novel audio that

matches naturally occurring sounds in their qualities such as realism or plausibility of the

sound. Recently, there has been a focus on developing such models for inharmonic sounds

such as those of environmental audio. Such synthesis models are useful for generating

background environmental sound scores for movies, games, and automated Foley sound

synthesis. The task in DCASE Foley Sound Synthesis challenge [127] this year is to

generate sounds of seven sound classes with high fidelity and diversity. There are two

tracks - tracks A and B - in this challenge, each using a curated dataset and with or

without external resources outlined on the challenge webpage1. Our submission is for

track B, i.e., using only the development dataset and without the use of any external

resources (audio data or pre-trained models).

For our submission, we use a type of Generative Adversarial Network (GAN) [138] called

StyleGAN2 [125, 126] trained from scratch on log-magnitude spectrogram representations

of the environmental sounds in the dataset. Generally, GANs learn a distribution of the

1https://dcase.community/challenge2023/task-foley-sound-synthesis
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Table A.1: DCASE Challenge System Details

Class w/z-
dim

No.
Map-
ping

Layers

Training
Iters

(kimgs)

Training
time

(∼days)

System 1 All Classes 512 8 1200 2.125

(Conditional.
One model, all

classes.)

System 2

Dog Bark 128 4 1600 2.5

Footstep 128 4 2600 4.7

Gunshot 128 4 3200 5

Keyboard 128 4 2200 3.95

(Unconditional.
Individual

models for each
class.)

Moving
Motor
Vehicle

128 4 800 1.29

Rain 128 4 1600 2.4

Sneeze/Cough 128 4 1800 3.79

sounds in the dataset, such that random sampling within the learned latent space gener-

ates novel audio samples matching the fidelity of the real-world training data. StyleGANs

are designed to further improve the quality of the generated sounds by better disentan-

gling the factors of variations observed in the dataset using an intermediate latent space.

Such architectures are inspired by the style transfer tasks and learn the intermediate

latent space using a set of affine transforms called the mapping network.

We submit two systems for this challenge - (1) System 1: A conditional StyleGAN2

trained on the entire development dataset and conditioned on the class-IDs using one-

hot encoding, and (2) System 2: An ensemble of unconditionally trained StyleGAN2

networks, one for each class of sounds in the dataset. We empirically decide the values

for certain hyperparameters of the StyleGAN2 architecture (e.g., the dimensionality of

the latent space and the number of layers in the network) depending on the number of

classes being modeled in the system. We report the Fréchet Audio Distance [39] scores

for each class per system on the training set. We describe each system in detail in the

following sections.
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Figure A.1: A schematic outlining the main components in our submission for
both System 1 and System 2. Conditioning vector c∗in is applied only to System
1.

A.2.2 System Overview

Figure A.1 illustrates the main components within our submission. We use StyleGAN2

in conjunction with log-magnitude spectrogram representations generated using Gabor

transforms [168]. Previously, Gupta et al. [110] showed that using the phase gradient

heap integration method (PGHI) [111, 168] for phase reconstruction during spectrogram

inversion is an effective way to reconstruct sharp and clear transients in the resulting

sounds. As most of the environmental sounds in the development dataset in this chal-

lenge include sound events with sharp attacks and transients (such as Dog Barks or

Footsteps), we use the Gaussian windowed log-magnitude spectrogram representations

during training and PGHI for high-fidelity spectrogram inversion in conjunction with

StyleGAN2.

We use StyleGAN2 from Nvidia’s official codebase2 and adapt it to train using audio

spectrograms. In this report, we elaborate mostly on the Generator of StyleGAN2 as

most of our changes to the official repository focus on that component. As shown in

Figure A.1, we use the Gaussian windowed log-magnitude Short-time Fourier Transform

(STFT) of an audio sample xreal to train the GAN. The aim of the generator is to

synthesize an audio sample xfake which resembles xreal. The generator samples from

the Z latent space to synthesize xfake. Specifically, a StyleGAN2’s generator can be

modeled as a two functions - a mapping network or a set of fully connected layers Gm(.)

that maps a d-dimensional latent space znoise ∈ Rdz to an intermediate w ∈ Rdw space

2https://github.com/NVlabs/stylegan2-ada-pytorch
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and a synthesis network Gs(.) that maps the resulting w vector to the spectrogram space

s ∈ Rf×t. Here dz, dw is the dimensionality of the Z and W space respectively. And f ,

t are the number of frequency channels and time frames of the generated spectrogram.

A.2.3 Experimental Setup

For System 1 (conditional), we set both dz and dw to 512. The number of fully connected

layers in the mapping network Gm (or the number of affine transforms before w vectors

are generated) is set to 8. For System 2 (unconditional ensemble), we set dz and dw both

to 128 and number of layers in the mapping network to 4. Further, we use a batch size

of 4 or 8 (depending upon the resource availability on our shared compute infrastructure

during training) to train the networks.

All our models were trained either on a single RTX 3090 24GB GPU or the National

University of Singapore’s high-performance compute infrastructure (shared single Nvidia

Tesla V100 32 GB GPU). The training details with respect to the number of epochs or

iterations and the time taken are outlined in table A.1.

A.2.3.1 Dataset

For this task, we used only the development dataset outlined in the challenge descrip-

tion [127, 128]. The dataset consists of environmental sounds from 7 classes. Classes

such as Dog Bark, Footstep, and Gunshots contained multi-event sounds with sharp

transients, whereas classes such as Rain or Motor Vehicle contained more noisy sounds.

Each sound sample was 4 seconds long and sampled at 22,050 Hz. We generate the Gaus-

sian windowed log-magnitude spectrogram with stft channels = 2048, n frames = 1024

and hop size = 128.

A.2.3.2 Data Augmentation

GANs are powerful generative architectures but need large datasets to model the dis-

tributions effectively. The number of samples per class in the development dataset was

very small, with an average of ∼46 minutes per class. We thus augmented our devel-

opment dataset using one of two simple strategies - zero-pad, and wrap-around, before

training our unconditional System 2. Note that no data augmentation was done for the

conditionally trained System 1.
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For all audio samples in training that contained events lasting less than 2.5 seconds

(detected by simply thresholding), we applied the zero-pad augmentation strategy. On

closer observation of the nature of the audio samples under each class, multiple samples

had sound events lasting only a few seconds with zero-padding for the remainder of the

sample (e.g., some Dog Barks and Gunshot samples). To augment such samples, we

shifted the sound events along the right of the time axis, while padding the beginning of

the sample with zeros. For sounds that had events lasting more than 2.5 seconds (e.g.,

Moving Motor Vehicle), we used the wrap-around strategy where we simply wrapped

around and shifted the samples along the time axis after removing the padded silences

during augmentation. We applied these augmentations to each audio file 10 times, which

augmented our training data by a factor of 10 for each class.

A.2.3.3 Evaluation Methodology

We use the Fréchet Audio Distance(FAD) [39] to evaluate the quality of our synthesized

audio for both systems. This metric measures the distance between the distributions of

training data and the synthesized audio based on their VGGish embeddings. We synthe-

sized 100 samples for each class and computed the FAD score against the entire training

set for that class. Further, this score was computed for multiple checkpoints during

training. We selected 2-3 checkpoints based on best FAD scores and then subjectively

evaluated by listening (internally within the research team) to the synthesized audio for

artefacts such as smearing of the attack transients in the samples and recognizability

of the sounds. We eventually selected the model which generated more recognizable

sounds than others and qualitatively preserved the transients for submission for this task

irrespective of their FAD scores.

A.2.4 Results & Discussion

Table A.2 shows the FAD scores for both System 1 and 2. Standard error of means

computed by bootstrapping 10 times. Scores marked with ∗ are higher than the baseline

in the task. Mean FAD scores for System 1 and 2 were 6.50 and 4.02 respectively.
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Table A.2: DCASE Challengen FAD Scores

Class FAD Scores(↓)

System 1

Dog Bark 5.34 ± 0.76

Footstep 5.06 ± 0.34

Gunshot 9.98 ± 0.66∗

Keyboard 3.94 ± 0.26

(Conditional) Moving Motor Vehicle 14.26 ± 0.82

Rain 5.30 ± 0.52

Sneeze/Cough 1.65 ± 0.08

System 2

Dog Bark 3.80 ± 1.09

Footstep 3.30 ± 0.21

Gunshot 4.40 ± 0.36

Keyboard 3.38 ± 0.18

(UnConditional

or per-class)

Moving Motor Vehicle 7.05 ± 1.27

Rain 4.21 ± 0.38

Sneeze/Cough 2.02 ± 0.11

While System 2 (unconditional ensemble) organizes its latent space according to the

variances in each individual class (intra-class variance), System 1 (conditional) has an

additional task of organizing its latent space according to both inter-class as well as intra-

class variances in the dataset. The implications from this on the quality of generated

sounds is two-fold - (1) though System 2 shows lower FAD scores than System 1, the latent

space generated by System 2 has ‘holes’ [263] in the latent space which generate out-of-

distribution (OOD) or noisy sounds. This nature of the latent space can be attributed

to the high intra-class variance in the sound samples in the training set. (2) Although

System 1 does not generate many OOD sounds and has a homogenous or smooth latent

space as compared to System 2, it generates more sounds which can be subjectively
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mis-categorized (i.e., the ‘holes’ in the latent space are filled with sounds from another

class or category). For instance, some System 1 synthesized Gun Shot sounds, such as

machine gun sounds, sound like Keyboard clicks. In this regard, System 2 generates more

categorically recognizable sounds.

Further, while training System 1 (conditional), we observe that all classes do not train

equally through the training iterations. While training for longer epochs, some classes,

such as Dog Barks, tend to overfit while other classes such as Gun Shots are still gener-

alizing to the distribution.

A.2.5 Limitations

The StyleGAN2 architecture was originally developed to a learn latent distributions for

images. As such, this architecture trains using square (same height and width)images.

To adapt this architecture to audio, we design square spectrograms by zero padding the

raw audio and selecting a specific number of frequency channels and time bins. Our

future work will involve modifying this architecture to use spectrograms of any number

of frames and frequency channels.
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Supplementary Material -

Understanding Opportunities for

Generative Models in Sound

Design

B.1 Semi-structured Interview Questions

As discussed in section 6.3.2, our interview consisted of three parts:

• Participant’s background and experience: Through these questions, we focused on

capturing the participant’s experience with sound design

– Can you describe some of the projects that you typically work with?

– Can you describe with an example some of the typical tasks you perform

while designing sounds?

– What is the most annoying part of your design process?

• Their expectations of generative AI: These questions captured the participant’s

outlook and past experience with generative AI.

– What do you feel about AI?

– What were your expectations from this AI-based sound design tool?

153
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Figure B.1: Architectural components driving the audio AI interfaces used in
the study

– Can you describe an ideal AI-based tool for sound design?

• Based on the creative task: Through these questions, we capture the participant’s

experience and feedback using the AI-based sound design tools in this study. For

this part of the interview, we use the screen recordings as discussion prompts.

– Can you explain what you wanted to do in the open-ended task and how did

you go about achieving it?

– Did the outcomes from your tasks match your expectations?

– How do you think such AI-assisted sound design tools fit into your design

process?

– What did you find most frustrating to do?

– What do you want AI-assisted sound design tools to do more?

B.2 AI-based CST Architecture Details

The two interfaces in this study, interface-1 which uses domain-specific controls, and

interface-2 which uses technology-specific controls, use the same underlying trained Style-

GAN. The StyleGAN architecture is shown in Figure B.1 (a), where Gs is the generator

(synthesis network), Gm is the mapping network, and D is the discriminator. E is a GAN

inversion network adapted from [184] for interface-1. A StyleGAN2’s generator can be

modeled as a function G(.) that maps a latent space Z, where z ∈ Rδz , to the higher

dimensional spectrogram space S ∈ Rf×t, such that S = G(z). Here δz is the dimension-

ality of the Z space and f , t are the number of frequency channels and time frames of

the generated spectrogram respectively. StyleGANs further learn an intermediate repre-

sentation W, where w ∈ Rδw , between that of Z and S via a mapping network Gm(.).
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This intermediate latent space further disentangles factors of variation as compared to

the latent Z space [126]. Further, a synthesis network Gs(.) maps the w vector to a

spectrogram S. Note that in this paper, whenever we refer to the term “latent space”,

we mean the W-space generated by the mapping network Gm.

We set Z and W space dimensions δz and δw both to 128 and use 4 mapping layers in

the Generator for all our experiments. Further, we use the log-magnitude spectrogram

representations generated using a Gabor transform [168](n frames= 256, stft channels=

512, hop size= 128), a Short-Time Fourier Transform (STFT) with a Gaussian window,

to train the StyleGAN2, and the Phase Gradient Heap Integration (PGHI) [111] for high-

fidelity spectrogram inversion of textures to audio [110]. All sounds generated using both

interfaces were normalized to -14dB for loudness using pyloudnorm [264]. The codebase

for the interfaces, StyleGAN, and Encoder is on GitHub as follows:

• Both interfaces in this study: https://github.com/augmented-human-lab/aud

io-design-toolkit

• StyleGAN: https://github.com/pkamath2/audio-stylegan2

• GAN Encoder: https://github.com/pkamath2/audio-latent-composition

A Google Colaboratory version of our interactive Creative Support Tools can be found

here: https://pkamath2.github.io/chi2024-resources/

B.2.1 Interface-1

Apart from StyleGAN, interface-1 is powered by two additional components: (1) a GAN

Encoder or inversion framework, and (2) a synthetic sound generator. The code for both

is adapted from [184]. While GANs map the latent space to real-world sounds, GAN

Encoders learn the inverse, i.e. they map real-world sounds to latent space embeddings.

This technique is especially useful when we want to “query” or “search” sounds within

the latent space using approximations (or synthetic sounds). The synthetic sounds are

generated by passing Gaussian noise N (0, I) through band-pass and fade filters. The

parameters to generate the synthetic sounds are actualized as sliders on the interface.

Figure B.1 (b) shows a conceptual diagram for the components behind interface-1. The

synthetic sounds are encoded into the latent space to derive their W-embeddings. These

embeddings are then passed through the generator to generate realistic AI-generated

sounds matching the synthetic sounds.

https://github.com/augmented-human-lab/audio-design-toolkit
https://github.com/augmented-human-lab/audio-design-toolkit
https://github.com/pkamath2/audio-stylegan2
https://github.com/pkamath2/audio-latent-composition
https://pkamath2.github.io/chi2024-resources/
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B.2.2 Interface-2

We utilize the semantic factorization algorithm (SeFa) [154] to derive technology-specific

controls from the latent space of the StyleGAN in this study. The SeFa method is a

closed-form, unsupervised method for latent semantic discovery. It decomposes the pre-

trained weights of Gm of the StyleGAN using eigendecomposition to find vectors for

controllability. The SeFa algorithm returns δw (128 in our case) dimension vectors and

their corresponding singular values. We fetch the top 10 vectors (vectors with the highest

singular values) and display them on the interface. The vectors are actualized as sliders

on the interface for users to interact and perform edits directly in the latent space of the

GAN.

Both interfaces were developed using Streamlit and ReactJs. Streamlit is a Python

library that enables frontend applications to connect to Python-based machine learning

models easily. The ReactJs-based frontend communicates with the Python backend using

Websockets.

B.3 Acoustic Parameters on Interface-1

The list of acoustic parameters on the interface-1 are:

• Impulse width: Parameter value decides how long the impact sound ‘rings’ or lasts

along the time axis.

• Rate: Controls the number of impact events in the sound along the time axis.

• Frequency band: Frequency range of the bandpass filters. Controls the brightness

of the sound. Higher frequencies sound brighter, such as impact sound on a hard

metal surface. Lower frequency ranges sound duller, such as impact sounds on soft

materials such as a cushion or a sofa.

• Filter order: Determines the frequency roll-off. Used in conjunction with the

frequency band. Higher filter orders have a steeper roll-off and transition between

the frequency bands.

• Fade In: Controls how the sound transitions from zero to full strength.

• Fade Out: Controls how the sound transitions from full strength to zero.
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B.4 Attribution for icons and images

The author created most of the images used in this chapter using various drawing tools.

Some visual icons were sourced from the following websites:

• In Figure 6.1: the sound designer icon is sourced from Flaticon.com; the domain-

specific controls icon is sourced from a ”slider” icon by Inggit Jaya from thenoun-

project.com.

• In Figure 6.2: the sound designer icon is sourced from Flaticon.com;
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Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th International

Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-

ing Research, pages 7176–7185, Virtual, 13–18 Jul 2020. PMLR. URL https:

//proceedings.mlr.press/v119/naeem20a.html.

http://dx.doi.org/10.21437/Interspeech.2019-2219
http://dx.doi.org/10.21437/Interspeech.2019-2219
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://openreview.net/forum?id=r1lUOzWCW
https://proceedings.mlr.press/v119/naeem20a.html
https://proceedings.mlr.press/v119/naeem20a.html


164 BIBLIOGRAPHY

[43] Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, and Syl-

vain Gelly. Assessing generative models via precision and recall. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, edi-

tors, Advances in Neural Information Processing Systems, volume 31, Montreal,

Canada, 2018. Curran Associates, Inc. URL https://proceedings.neurips.cc

/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf.

[44] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local

nash equilibrium. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-

cessing Systems, volume 30, Long Beach, USA, 2017. Curran Associates, Inc. URL

https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe6587

1369074926d-Paper.pdf. 4, 80

[45] Brecht De Man, Ryan Stables, and Joshua D Reiss. Intelligent Music Production.

Routledge, 2019. 4, 106

[46] Yijun Zhou, Yuki Koyama, Masataka Goto, and Takeo Igarashi. Interactive

exploration-exploitation balancing for generative melody composition. In 26th

International Conference on Intelligent User Interfaces, IUI ’21, page 43–47,

New York, NY, USA, 2021. Association for Computing Machinery. ISBN

9781450380171. doi: 10.1145/3397481.3450663. URL https://doi.org/10

.1145/3397481.3450663. 4, 106

[47] Emma Frid, Celso Gomes, and Zeyu Jin. Music creation by example. In Proceedings

of the 2020 CHI Conference on Human Factors in Computing Systems, CHI ’20,

page 1–13, New York, NY, USA, 2020. Association for Computing Machinery. ISBN

9781450367080. doi: 10.1145/3313831.3376514. URL https://doi.org/10.114

5/3313831.3376514.

[48] Renaud Bougueng Tchemeube, Jeffrey John Ens, and Philippe Pasquier. Calliope:

A co-creative interface for multi-track music generation. In Proceedings of the 14th

Conference on Creativity and Cognition, C&C ’22, page 608–611, New York, NY,

USA, 2022. Association for Computing Machinery. ISBN 9781450393270. doi:

10.1145/3527927.3535200. URL https://doi.org/10.1145/3527927.3535200.

4, 19, 20, 59, 106

[49] Ben Shneiderman. Human-centered AI. Oxford University Press, 2022. 5, 7, 17,

126

https://proceedings.neurips.cc/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f7696a9b362ac5a51c3dc8f098b73923-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a1d694707eb0fefe65871369074926d-Paper.pdf
https://doi.org/10.1145/3397481.3450663
https://doi.org/10.1145/3397481.3450663
https://doi.org/10.1145/3313831.3376514
https://doi.org/10.1145/3313831.3376514
https://doi.org/10.1145/3527927.3535200


BIBLIOGRAPHY 165

[50] Jonas Frich, Lindsay MacDonald Vermeulen, Christian Remy, Michael Mose Bisk-

jaer, and Peter Dalsgaard. Mapping the landscape of creativity support tools in

hci. In Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems, CHI ’19, page 1–18, New York, NY, USA, 2019. Association for Com-

puting Machinery. ISBN 9781450359702. doi: 10.1145/3290605.3300619. URL

https://doi.org/10.1145/3290605.3300619. 5, 19, 106

[51] Linda Candy. Practice based research: A guide. CCS report, 1(2):1–19, 2006. 5,

113

[52] Ben Shneiderman. The eight golden rules of interface design[accessed: 30 june

2024], 2016. URL https://www.cs.umd.edu/~ben/goldenrules.html. 5, 6, 17,

19
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distillation for comprehensible audio synthesis with gans. In International Society

for Music Information Retrieval Conference, 2021. 28, 37

[125] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture

for generative adversarial networks. In Proc. of the IEEE/CVF conference on

computer vision and pattern recognition, pages 4401–4410, 2019. 28, 29, 36, 41,

146

[126] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and

Timo Aila. Analyzing and improving the image quality of stylegan. In 2020

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 8107–8116, Los Alamitos, CA, USA, jun 2020. IEEE Computer Society. doi:

10.1109/CVPR42600.2020.00813. URL https://doi.ieeecomputersociety.or

g/10.1109/CVPR42600.2020.00813. 28, 29, 36, 38, 40, 41, 140, 146, 155

http://www.deeplearningbook.org
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00813
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.00813


174 BIBLIOGRAPHY

[127] Keunwoo Choi, Jaekwon Im, Laurie Heller, Brian McFee, Keisuke Imoto, Yuki

Okamoto, Mathieu Lagrange, and Shinosuke Takamichi. Foley sound synthesis at

the dcase 2023 challenge. arXiv preprint arXiv:2304.12521, 2023. 29, 108, 146, 149

[128] Keunwoo Choi, Jaekwon Im, Laurie Heller, Brian McFee, Keisuke Imoto, Yuki

Okamoto, Mathieu Lagrange, and Shinosuke Takamichi. Foley sound synthesis at

the dcase 2023 challenge. In arXiv e-prints: 2304.12521, 2023. 29, 149

[129] Weihao Xia, Yulun Zhang, Yujiu Yang, Jing-Hao Xue, Bolei Zhou, and Ming-

Hsuan Yang. Gan inversion: A survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 45(3):3121–3138, 2023. doi: 10.1109/TPAMI.2022.3181070.

30

[130] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic mod-

els. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,

Advances in Neural Information Processing Systems, volume 33, pages 6840–6851.

Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_f

iles/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf. 31,

58, 60

[131] Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, and Soujanya Poria.

Text-to-audio generation using instruction guided latent diffusion model. In

Proceedings of the 31st ACM International Conference on Multimedia, MM ’23,

page 3590–3598, New York, NY, USA, 2023. Association for Computing Ma-

chinery. ISBN 9798400701085. doi: 10.1145/3581783.3612348. URL https:

//doi-org.libproxy1.nus.edu.sg/10.1145/3581783.3612348. 31, 58, 60, 65,

135

[132] Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu

Wang, and Mark D Plumbley. AudioLDM: Text-to-audio generation with latent

diffusion models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-

bara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the

40th International Conference on Machine Learning, volume 202 of Proceedings

of Machine Learning Research, pages 21450–21474. PMLR, 23–29 Jul 2023. URL

https://proceedings.mlr.press/v202/liu23f.html. 32, 60, 65, 66, 106, 128,

135, 139, 140

[133] Haohe Liu, Qiao Tian, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Yup-

ing Wang, Wenwu Wang, Yuxuan Wang, and Mark D Plumbley. Audioldm 2:

Learning holistic audio generation with self-supervised pretraining. arXiv preprint

arXiv:2308.05734, 2023. 58

https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf
https://doi-org.libproxy1.nus.edu.sg/10.1145/3581783.3612348
https://doi-org.libproxy1.nus.edu.sg/10.1145/3581783.3612348
https://proceedings.mlr.press/v202/liu23f.html


BIBLIOGRAPHY 175

[134] Zachary Novack, Julian McAuley, Taylor Berg-Kirkpatrick, and Nicholas J Bryan.

Ditto: Diffusion inference-time t-optimization for music generation. arXiv preprint

arXiv:2401.12179, 2024. 31, 60

[135] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In Medical image computing and

computer-assisted intervention–MICCAI 2015: 18th international conference, Mu-

nich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241.

Springer, 2015. 31, 32, 60

[136] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013. 31

[137] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models. In Pro-

ceedings of the IEEE/CVF conference on computer vision and pattern recognition,

pages 10684–10695, 2022. 31, 60

[138] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger,

editors, Advances in Neural Information Processing Systems, volume 27. Curran

Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/p

aper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf. 36, 87, 146

[139] Peter Grosche, Meinard Müller, and Joan Serrà. Audio content-based music re-
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